Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches

Krämer O, Klausing S, Noll T (2010)
Applied Microbiology and Biotechnology 88(2): 425-436.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Due to the increasing demand for recombinant proteins, the interest in mammalian cell culture, especially of Chinese hamster ovary cells, grows rapidly. This is accompanied by the desire to improve cell lines in order to achieve higher titers and a better product quality. Until recently, most cell line development procedures were based on random integration and gene amplification, but several methods for targeted genetic modification of cells have been developed. Some of those are homologous recombination, RNA interference and zinc-finger nucleases. Especially the latter two have evolved considerably and will soon become a standard for cell line engineering in research and industrial application. This review presents an overview of established as well as new and promising techniques for targeted genetic modification of mammalian cells.
Erscheinungsjahr
2010
Zeitschriftentitel
Applied Microbiology and Biotechnology
Band
88
Ausgabe
2
Seite(n)
425-436
ISSN
0175-7598
eISSN
1432-0614
Page URI
https://pub.uni-bielefeld.de/record/2396489

Zitieren

Krämer O, Klausing S, Noll T. Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology. 2010;88(2):425-436.
Krämer, O., Klausing, S., & Noll, T. (2010). Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology, 88(2), 425-436. doi:10.1007/s00253-010-2798-6
Krämer, O., Klausing, S., and Noll, T. (2010). Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology 88, 425-436.
Krämer, O., Klausing, S., & Noll, T., 2010. Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology, 88(2), p 425-436.
O. Krämer, S. Klausing, and T. Noll, “Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches”, Applied Microbiology and Biotechnology, vol. 88, 2010, pp. 425-436.
Krämer, O., Klausing, S., Noll, T.: Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology. 88, 425-436 (2010).
Krämer, Oliver, Klausing, Sandra, and Noll, Thomas. “Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches”. Applied Microbiology and Biotechnology 88.2 (2010): 425-436.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Label-free protein quantification of sodium butyrate treated CHO cells by ESI-UHR-TOF-MS.
Müller B, Heinrich C, Jabs W, Kaspar-Schönefeld S, Schmidt A, Rodrigues de Carvalho N, Albaum SP, Baessmann C, Noll T, Hoffrogge R., J Biotechnol 257(), 2017
PMID: 28363874
miR-143 targets MAPK7 in CHO cells and induces a hyperproductive phenotype to enhance production of difficult-to-express proteins.
Schoellhorn M, Fischer S, Wagner A, Handrick R, Otte K., Biotechnol Prog 33(4), 2017
PMID: 28371547
Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.
Ritter A, Voedisch B, Wienberg J, Wilms B, Geisse S, Jostock T, Laux H., Biotechnol Bioeng 113(5), 2016
PMID: 26523402
One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment.
Grav LM, Lee JS, Gerling S, Kallehauge TB, Hansen AH, Kol S, Lee GM, Pedersen LE, Kildegaard HF., Biotechnol J 10(9), 2015
PMID: 25864574
CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H., Biotechnol J 10(7), 2015
PMID: 26058577
miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality.
Fischer S, Paul AJ, Wagner A, Mathias S, Geiss M, Schandock F, Domnowski M, Zimmermann J, Handrick R, Hesse F, Otte K., Biotechnol Bioeng 112(10), 2015
PMID: 25997799
Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.
Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM., Biotechnol Prog 30(3), 2014
PMID: 24574326
Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers.
Yang WC, Lu J, Nguyen NB, Zhang A, Healy NV, Kshirsagar R, Ryll T, Huang YM., Mol Biotechnol 56(5), 2014
PMID: 24381145
The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy.
Yang Z, Halim A, Narimatsu Y, Jitendra Joshi H, Steentoft C, Schjoldager KT, Alder Schulz M, Sealover NR, Kayser KJ, Paul Bennett E, Levery SB, Vakhrushev SY, Clausen H., Mol Cell Proteomics 13(12), 2014
PMID: 25092905
Development of small scale cell culture models for screening poloxamer 188 lot-to-lot variation.
Peng H, Hall KM, Clayton B, Wiltberger K, Hu W, Hughes E, Kane J, Ney R, Ryll T., Biotechnol Prog 30(6), 2014
PMID: 25098761
A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells.
Fischer S, Buck T, Wagner A, Ehrhart C, Giancaterino J, Mang S, Schad M, Mathias S, Aschrafi A, Handrick R, Otte K., Biotechnol J 9(10), 2014
PMID: 25061012
Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter.
Fan L, Kadura I, Krebs LE, Larson JL, Bowden DM, Frye CC., J Biotechnol 168(4), 2013
PMID: 23994266
Genomics in mammalian cell culture bioprocessing.
Wuest DM, Harcum SW, Lee KH., Biotechnol Adv 30(3), 2012
PMID: 22079893
Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics.
Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Müller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Pühler A, Clynes M, Borth N., Biotechnol Bioeng 109(6), 2012
PMID: 22389098
Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.
Mead EJ, Chiverton LM, Spurgeon SK, Martin EB, Montague GA, Smales CM, von der Haar T., PLoS One 7(10), 2012
PMID: 23071804
Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering.
Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Höner Zu Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Pühler A, Borth N, Grillari J., J Biotechnol 153(1-2), 2011
PMID: 21392545

94 References

Daten bereitgestellt von Europe PubMed Central.

Apoptosis in cell culture.
al-Rubeai M, Singh RP., Curr. Opin. Biotechnol. 9(2), 1998
PMID: 9588004
The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race.
Aravin AA, Hannon GJ, Brennecke J., Science 318(5851), 2007
PMID: 17975059
Engineering polydactyl zinc-finger transcription factors.
Beerli RR, Barbas CF 3rd., Nat. Biotechnol. 20(2), 2002
PMID: 11821858
Role for a bidentate ribonuclease in the initiation step of RNA interference.
Bernstein E, Caudy AA, Hammond SM, Hannon GJ., Nature 409(6818), 2001
PMID: 11201747
Enhancing gene targeting with designed zinc finger nucleases.
Bibikova M, Beumer K, Trautman JK, Carroll D., Science 300(5620), 2003
PMID: 12730594
Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases.
Bibikova M, Golic M, Golic KG, Carroll D., Genetics 161(3), 2002
PMID: 12136019
Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing.
Birzele F, Schaub J, Rust W, Clemens C, Baum P, Kaufmann H, Weith A, Schulz TW, Hildebrandt T., Nucleic Acids Res. 38(12), 2010
PMID: 20194116
A system for stable expression of short interfering RNAs in mammalian cells.
Brummelkamp TR, Bernards R, Agami R., Science 296(5567), 2002
PMID: 11910072
Origins and Mechanisms of miRNAs and siRNAs.
Carthew RW, Sontheimer EJ., Cell 136(4), 2009
PMID: 19239886
Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC.
Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, Soifer H, Gatignol A, Riggs A, Rossi JJ., Nucleic Acids Res. 35(15), 2007
PMID: 17660190
Zinc-finger Nucleases: The Next Generation Emerges.
Cathomen T, Keith Joung J., Mol. Ther. 16(7), 2008
PMID: 28178480
Lesser known relatives of miRNA.
Choudhuri S., Biochem. Biophys. Res. Commun. 388(2), 2009
PMID: 19679101
BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells.
Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD., Biotechnol. Bioeng. 105(2), 2010
PMID: 19777580
Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S., Nucleic Acids Res. 33(18), 2005
PMID: 16251401
Killing the messenger: short RNAs that silence gene expression.
Dykxhoorn DM, Novina CD, Sharp PA., Nat. Rev. Mol. Cell Biol. 4(6), 2003
PMID: 12778125
Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T., Nature 411(6836), 2001
PMID: 11373684
A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells.
Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E., Nucleic Acids Res. 31(11), 2003
PMID: 12771221
Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions.
Figueroa B Jr, Chen S, Oyler GA, Hardwick JM, Betenbaugh MJ., Biotechnol. Bioeng. 85(6), 2004
PMID: 14966800
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC., Nature 391(6669), 1998
PMID: 9486653
Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN).
Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK., PLoS ONE 4(2), 2009
PMID: 19198653
Survival of recombinant erythropoietin in the circulation: the role of carbohydrates.
Fukuda MN, Sasaki H, Lopez L, Fukuda M., Blood 73(1), 1989
PMID: 2910371
Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells.
Fussenegger M, Schlatter S, Datwyler D, Mazur X, Bailey JE., Nat. Biotechnol. 16(5), 1998
PMID: 9592397
An inside job for siRNAs.
Golden DE, Gerbasi VR, Sontheimer EJ., Mol. Cell 31(3), 2008
PMID: 18691963
Apoptosis in batch cultures of Chinese hamster ovary cells.
Goswami J, Sinskey AJ, Steller H, Stephanopoulos GN, Wang DI., Biotechnol. Bioeng. 62(6), 1999
PMID: 9951521

C, Genome Biol. 8 Suppl. 1(), 2007
Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways.
Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA., Nature 441(7092), 2006
PMID: 16724069
Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds.
Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Paques F, Duchateau P., Nucleic Acids Res. 38(6), 2009
PMID: 20026587
Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease.
Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Paques F, Duchateau P., Nucleic Acids Res. 37(16), 2009
PMID: 19584299
Bcl2 impedes DNA mismatch repair by directly regulating the hMSH2-hMSH6 heterodimeric complex.
Hou Y, Gao F, Wang Q, Zhao J, Flagg T, Zhang Y, Deng X., J. Biol. Chem. 282(12), 2007
PMID: 17259174

Z, Methods 49(3), 2006

KP, Chem Eng Prog 103(10), 2007
Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics.
Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M., J. Biotechnol. 130(3), 2007
PMID: 17559959
Targeted manipulation of mammalian genomes using designed zinc finger nucleases.
Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin CI, Chandrasegaran S., Biochem. Biophys. Res. Commun. 388(1), 2009
PMID: 19635463

A, Biotechnol. Adv 6(), 2009

FT, Proc Natl Acad Sci USA 60(4), 1968
Strategies for silencing human disease using RNA interference.
Kim DH, Rossi JJ., Nat. Rev. Genet. 8(3), 2007
PMID: 17304245
The nuclear RNase III Drosha initiates microRNA processing.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN., Nature 425(6956), 2003
PMID: 14508493
Overexpression of heat shock proteins (HSPs) in CHO cells for extended culture viability and improved recombinant protein production.
Lee YY, Wong KT, Tan J, Toh PC, Mao Y, Brusic V, Yap MG., J. Biotechnol. 143(1), 2009
PMID: 19527755
RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells.
Lim SF, Chuan KH, Liu S, Loh SO, Chung BY, Ong CC, Song Z., Metab. Eng. 8(6), 2006
PMID: 16860584
Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases.
Liu PQ, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD., Biotechnol. Bioeng. 106(1), 2010
PMID: 20047187
Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification.
Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK., Mol. Cell 31(2), 2008
PMID: 18657511
Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage.
Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S., Biochem. Biophys. Res. Commun. 334(4), 2005
PMID: 16043120
Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults.
Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ., Biotechnol. Bioeng. 67(5), 2000
PMID: 10649230

M, Drug Discovery Today: Technol 5(2–3), 2008

T, Cytotechnology 50(1–3), 2006
An improved zinc-finger nuclease architecture for highly specific genome editing.
Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ., Nat. Biotechnol. 25(7), 2007
PMID: 17603475
Development of a self-inactivating lentivirus vector.
Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM., J. Virol. 72(10), 1998
PMID: 9733856
Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA.
Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, Shitara K, Satoh M., Biotechnol. Bioeng. 88(7), 2004
PMID: 15515168
MicroRNAs as targets for engineering of CHO cell factories.
Muller D, Katinger H, Grillari J., Trends Biotechnol. 26(7), 2008
PMID: 18471912

K, Gene Ther Mol Biol 10(), 2006
RNA interference of sialidase improves glycoprotein sialic acid content consistency.
Ngantung FA, Miller PG, Brushett FR, Tang GL, Wang DI., Biotechnol. Bioeng. 95(1), 2006
PMID: 16673415
Systems biotechnology of mammalian cell factories.
O'Callaghan PM, James DC., Brief Funct Genomic Proteomic 7(2), 2008
PMID: 18326543
Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression.
Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, Honda K, Omasa T, Ohtake H., Biotechnol. Bioeng. 100(2), 2008
PMID: 18078289
Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells.
Omasa T, Takami T, Ohya T, Kiyama E, Hayashi T, Nishii H, Miki H, Kobayashi K, Honda K, Ohtake H., J. Biosci. Bioeng. 106(6), 2008
PMID: 19134553

A, Cytotechnology 50(1–3), 2006
Zinc-finger nucleases: a powerful tool for genetic engineering of animals.
Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I., Transgenic Res. 19(3), 2009
PMID: 19821047

Y, Proc Natl Acad Sci USA 105(15), 2008
Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants.
Sauerwald TM, Betenbaugh MJ, Oyler GA., Biotechnol. Bioeng. 77(6), 2002
PMID: 11807766

P, Cytotechnology 30(1–3), 1999
Asymmetry in the assembly of the RNAi enzyme complex.
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD., Cell 115(2), 2003
PMID: 14567917
Engineering cells for cell culture bioprocessing--physiological fundamentals.
Seth G, Hossler P, Yee JC, Hu WS., Adv. Biochem. Eng. Biotechnol. 101(), 2006
PMID: 16989260
Apoptosis and its control in cell culture systems.
Singh RP, Finka G, Emery AN, Al-Rubeai M., Cytotechnology 23(1-3), 1997
PMID: 22358524
On the road to reading the RNA-interference code.
Siomi H, Siomi MC., Nature 457(7228), 2009
PMID: 19158785

YH, Metab Eng 9(5–6), 2007
Perspective: machines for RNAi.
Tomari Y, Zamore PD., Genes Dev. 19(5), 2005
PMID: 15741316

G, Proc Natl Acad Sci USA 77(7), 1980
Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.
Urlaub G, Kas E, Carothers AM, Chasin LA., Cell 33(2), 1983
PMID: 6305508
Highly efficient endogenous human gene correction using designed zinc-finger nucleases.
Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC., Nature 435(7042), 2005
PMID: 15806097

KM, Proc Natl Acad Sci USA 98(15), 2001
Bcl2 negatively regulates DNA double-strand-break repair through a nonhomologous end-joining pathway.
Wang Q, Gao F, May WS, Zhang Y, Flagg T, Deng X., Mol. Cell 29(4), 2008
PMID: 18313386
EST sequencing for gene discovery in Chinese hamster ovary cells.
Wlaschin KF, Nissom PM, Gatti Mde L, Ong PF, Arleen S, Tan KS, Rink A, Cham B, Wong K, Yap M, Hu WS., Biotechnol. Bioeng. 91(5), 2005
PMID: 16003777
DNA recognition by Cys2His2 zinc finger proteins.
Wolfe SA, Nekludova L, Pabo CO., Annu Rev Biophys Biomol Struct 29(), 2000
PMID: 10940247
Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures.
Wong DC, Wong KT, Lee YY, Morin PN, Heng CK, Yap MG., Biotechnol. Bioeng. 94(2), 2006
PMID: 16570314
Targeting early apoptotic genes in batch and fed-batch CHO cell cultures.
Wong DC, Wong KT, Nissom PM, Heng CK, Yap MG., Biotechnol. Bioeng. 95(3), 2006
PMID: 16894638
The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes.
Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B., J. Cell. Sci. 120(Pt 17), 2007
PMID: 17715156
Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M., Biotechnol. Bioeng. 87(5), 2004
PMID: 15352059
Lentiviral integration preferences in transgenic mice.
Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AW., Genesis 46(12), 2008
PMID: 18821598
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
Yeom KH, Lee Y, Han J, Suh MR, Kim VN., Nucleic Acids Res. 34(16), 2006
PMID: 16963499
Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells.
Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV., Biotechnol. Bioeng. 105(6), 2010
PMID: 20014139

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20689950
PubMed | Europe PMC

Suchen in

Google Scholar