Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study

Magin S, Körfer N, Partenheimer H, Lange C, Zander A, Noll T (2009)
Stem Cell and Development 18(1): 173-186.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Magin, S; Körfer, N; Partenheimer, H; Lange, C; Zander, A; Noll, ThomasUniBi
Abstract / Bemerkung
Although umbilical cord blood (UCB) has been widely accepted as an alternative source of hematopoietic stem cells (HSC) for transplantation, its use in adults is restricted because of low absolute HSC numbers. To overcome this obstacle, expansion of HSC in coculture with feeder cells is a promising possibility. In this study, we compared the potential of three human primary cell types, namely, mesenchymal stem cells (MSC), human umbilical cord vein endothelial cells (HUVEC), and Wharton's jelly cells (WJC), for use as feeder cells in a potentially clinically applicable coculture system. In first experiments, we evaluated procedures needed to obtain feeder cells, the possibility to separate them from cells derived from CD34(+) cells after coculture, their ability to activate allogeneic T cells, and their survival in CD34(+)-adapted medium. Finally, we compared their support for UCB-derived CD34(+) expansion. MSC and WJC were superior to HUVEC in terms of ease and reliability of isolation procedures needed. None of the potential feeder cells expressed CD34 or CD45, thus providing markers for cell sorting after coculture. Other markers (CD31, CD90, CD105, CD166) were expressed differently on feeder cell types. While MSC in higher concentrations did not activate allogeneic T cells, those were stimulated by lower concentrations of MSC as shown by CD25, CD69, and CD71 expression. In contrast, HUVEC and WJC were proven to activate T cells at all ratios tested. Feeder cells survived a 7-day culture in CD34(+)-adapted medium. In cocultures of UCB CD34(+) cells with primary feeder cells, mononuclear cell expansion was 30- to 60-fold, colony-forming cell expansion 20- to 40-fold, and cobblestone area-forming cell expansion 10- to 50-fold. We conclude that after a careful further evaluation especially of their immunological properties, all three primary cell types might possibly be suitable for use in a potentially clinically applicable system for expansion from UCB CD34(+) cells, with WJC being best choice and MSC still superior to HUVEC.
Erscheinungsjahr
2009
Zeitschriftentitel
Stem Cell and Development
Band
18
Ausgabe
1
Seite(n)
173-186
ISSN
1547-3287
eISSN
1557-8534
Page URI
https://pub.uni-bielefeld.de/record/2395472

Zitieren

Magin S, Körfer N, Partenheimer H, Lange C, Zander A, Noll T. Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study. Stem Cell and Development. 2009;18(1):173-186.
Magin, S., Körfer, N., Partenheimer, H., Lange, C., Zander, A., & Noll, T. (2009). Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study. Stem Cell and Development, 18(1), 173-186. https://doi.org/10.1089/scd.2007.0273
Magin, S, Körfer, N, Partenheimer, H, Lange, C, Zander, A, and Noll, Thomas. 2009. “Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study”. Stem Cell and Development 18 (1): 173-186.
Magin, S., Körfer, N., Partenheimer, H., Lange, C., Zander, A., and Noll, T. (2009). Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study. Stem Cell and Development 18, 173-186.
Magin, S., et al., 2009. Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study. Stem Cell and Development, 18(1), p 173-186.
S. Magin, et al., “Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study”, Stem Cell and Development, vol. 18, 2009, pp. 173-186.
Magin, S., Körfer, N., Partenheimer, H., Lange, C., Zander, A., Noll, T.: Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study. Stem Cell and Development. 18, 173-186 (2009).
Magin, S, Körfer, N, Partenheimer, H, Lange, C, Zander, A, and Noll, Thomas. “Primary cells as feeder cells for clinical co-culture expansion of human hematopoietic stem cells from umbilical cord blood – a comparative study”. Stem Cell and Development 18.1 (2009): 173-186.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Current and future status of stem cell expansion.
Becnel M, Shpall EJ., Curr Opin Hematol 25(6), 2018
PMID: 30239378
Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review.
Lo Iacono M, Anzalone R, La Rocca G, Baiamonte E, Maggio A, Acuto S., Stem Cell Rev Rep 13(1), 2017
PMID: 27853939
Human mesenchymal stem cells promote CD34+ hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity.
Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, Ramasamy R, Tan JJ., Cell Biol Int 41(6), 2017
PMID: 28403524
Generation of a patterned co-culture system composed of adherent cells and immobilized nonadherent cells.
Yamazoe H, Ichikawa T, Hagihara Y, Iwasaki Y., Acta Biomater 31(), 2016
PMID: 26685756
Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34(+) Transplants.
van der Garde M, van Pel M, Millán Rivero JE, de Graaf-Dijkstra A, Slot MC, Kleinveld Y, Watt SM, Roelofs H, Zwaginga JJ., Stem Cells Dev 24(22), 2015
PMID: 26414086
Human adipose-tissue derived stromal cells in combination with hypoxia effectively support ex vivo expansion of cord blood haematopoietic progenitors.
Andreeva ER, Andrianova IV, Sotnezova EV, Buravkov SV, Bobyleva PI, Romanov YA, Buravkova LB., PLoS One 10(4), 2014
PMID: 25919031
Proteomic profiling of secreted proteins for the hematopoietic support of interleukin-stimulated human umbilical vein endothelial cells.
Bal G, Kamhieh-Milz J, Sterzer V, Al-Samman M, Debski J, Debski J, Klein O, Kamhieh-Milz S, Bhakdi S, Salama A., Cell Transplant 22(7), 2013
PMID: 23031318
DLK1(PREF1) is a negative regulator of adipogenesis in CD105⁺/CD90⁺/CD34⁺/CD31⁻/FABP4⁻ adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women.
Mitterberger MC, Lechner S, Mattesich M, Kaiser A, Probst D, Wenger N, Pierer G, Zwerschke W., Stem Cell Res 9(1), 2012
PMID: 22640926
Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells.
Hammoud M, Vlaski M, Duchez P, Chevaleyre J, Lafarge X, Boiron JM, Praloran V, Brunet De La Grange P, Ivanovic Z., J Cell Physiol 227(6), 2012
PMID: 21913190
A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from Wharton's jelly without enzymatic treatment.
De Bruyn C, Najar M, Raicevic G, Meuleman N, Pieters K, Stamatopoulos B, Delforge A, Bron D, Lagneaux L., Stem Cells Dev 20(3), 2011
PMID: 20923277
Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors.
Xia X, Ji T, Chen P, Li X, Fang Y, Gao Q, Liao S, You L, Xu H, Ma Q, Wu P, Hu W, Wu M, Cao L, Li K, Weng Y, Han Z, Wei J, Liu R, Wang S, Xu G, Wang D, Zhou J, Ma D., Mol Cancer 10(), 2011
PMID: 22054049
Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells.
Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W., J Cell Mol Med 14(1-2), 2010
PMID: 19432817
Individual and combined effects of mesenchymal stromal cells and recombinant stimulatory cytokines on the in vitro growth of primitive hematopoietic cells from human umbilical cord blood.
Flores-Guzmán P, Flores-Figueroa E, Montesinos JJ, Martínez-Jaramillo G, Fernández-Sánchez V, Valencia-Plata I, Alarcón-Santos G, Mayani H., Cytotherapy 11(7), 2009
PMID: 19903101
Interleukin-21 induces the differentiation of human umbilical cord blood CD34-lineage- cells into pseudomature lytic NK cells.
Bonanno G, Mariotti A, Procoli A, Corallo M, Scambia G, Pierelli L, Rutella S., BMC Immunol 10(), 2009
PMID: 19712464

56 References

Daten bereitgestellt von Europe PubMed Central.

Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche.
Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ., Bone Marrow Transplant. 39(1), 2007
PMID: 17164824
Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease.
Brunstein CG, Barker JN, Weisdorf DJ, DeFor TE, Miller JS, Blazar BR, McGlave PB, Wagner JE., Blood 110(8), 2007
PMID: 17569820
Endothelial cell support of hematopoiesis is differentially altered by IL-1 and glucocorticoids.
Jazwiec B, Solanilla A, Grosset C, Mahon FX, Dupouy M, Pigeonnier-Lagarde V, Belloc F, Schweitzer K, Reiffers J, Ripoche J., Leukemia 12(8), 1998
PMID: 9697875
Human umbilical vein endothelial cells increase ex vivo expansion of human CD34(+) PBPC through IL-6 secretion.
Li N, Eljaafari A, Bensoussan D, Wang Y, Latger-Cannard V, Serrurier B, Boura C, Kennel A, Stoltz J, Feugier P., Cytotherapy 8(4), 2006
PMID: 16923609
Matrix cells from Wharton's jelly form neurons and glia.
Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S., Stem Cells 21(1), 2003
PMID: 12529551
Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.
Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R., Exp. Hematol. 30(1), 2002
PMID: 11823036
Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM., Blood 99(10), 2002
PMID: 11986244
Alternative mechanisms with and without steel factor support primitive human hematopoiesis.
Sutherland HJ, Hogge DE, Cook D, Eaves CJ., Blood 81(6), 1993
PMID: 7680918
Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use.
Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR., Exp. Hematol. 32(12), 2004
PMID: 15588946
Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells.
Nguyen XD, Eichler H, Dugrillon A, Piechaczek C, Braun M, Kluter H., J. Immunol. Methods 275(1-2), 2003
PMID: 12667670
Stem cells: characterization and measurement.
Ploemacher RE., Baillieres Clin. Haematol. 10(3), 1997
PMID: 9421609
Factors affecting the volume of umbilical cord blood collections.
Yamada T, Okamoto Y, Kasamatsu H, Horie Y, Yamashita N, Matsumoto K., Acta Obstet Gynecol Scand 79(10), 2000
PMID: 11304964

AUTHOR UNKNOWN, 0
Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro.
Muller AM, Hermanns MI, Skrzynski C, Nesslinger M, Muller KM, Kirkpatrick CJ., Exp. Mol. Pathol. 72(3), 2002
PMID: 12009786
Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.
Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM., Blood 98(9), 2001
PMID: 11675329

AUTHOR UNKNOWN, 0
Mesenchymal stem cells: biology and potential clinical uses.
Deans RJ, Moseley AB., Exp. Hematol. 28(8), 2000
PMID: 10989188
Isolation and culture of umbilical vein mesenchymal stem cells.
Covas DT, Siufi JL, Silva AR, Orellana MD., Braz. J. Med. Biol. Res. 36(9), 2003
PMID: 12937783
Immunologic phenotype of cultured endothelial cells: quantitative analysis of cell surface molecules.
Mutin M, Dignat-George F, Sampol J., Tissue Antigens 50(5), 1997
PMID: 9389318
A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions.
Lidington EA, Moyes DL, McCormack AM, Rose ML., Transpl. Immunol. 7(4), 1999
PMID: 10638837
Irradiation induces up-regulation of E9 protein (CD105) in human vascular endothelial cells.
Wang JM, Kumar S, van Agthoven A, Kumar P, Pye D, Hunter RD., Int. J. Cancer 62(6), 1995
PMID: 7558432
The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105).
Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J., Biochem. Biophys. Res. Commun. 265(1), 1999
PMID: 10548503
Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity.
Li N, Feugier P, Serrurrier B, Latger-Cannard V, Lesesve JF, Stoltz JF, Eljaafari A., Exp. Hematol. 35(3), 2007
PMID: 17309831
Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells.
Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F., Blood 105(7), 2004
PMID: 15591115

AUTHOR UNKNOWN, 0
Vascular endothelial cells provide T cells with costimulatory signals via the OX40/gp34 system.
Kunitomi A, Hori T, Imura A, Uchiyama T., J. Leukoc. Biol. 68(1), 2000
PMID: 10914497
The immunology of pregnancy.
Weetman AP., Thyroid 9(7), 1999
PMID: 10447007
Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells.
Van Overstraeten-Schlogel N, Beguin Y, Gothot A., Eur. J. Haematol. 76(6), 2006
PMID: 16494621
Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(-) early progenitors cultured over human MSCs as a feeder layer.
Kadereit S, Deeds LS, Haynesworth SE, Koc ON, Kozik MM, Szekely E, Daum-Woods K, Goetchius GW, Fu P, Welniak LA, Murphy WJ, Laughlin MJ., Stem Cells 20(6), 2002
PMID: 12456965
Glutamate modulation of human lymphocyte growth: in vitro studies.
Lombardi G, Miglio G, Dianzani C, Mesturini R, Varsaldi F, Chiocchetti A, Dianzani U, Fantozzi R., Biochem. Biophys. Res. Commun. 318(2), 2004
PMID: 15120628
A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells.
da Silva CL, Goncalves R, Crapnell KB, Cabral JM, Zanjani ED, Almeida-Porada G, Almeida-Porada G., Exp. Hematol. 33(7), 2005
PMID: 15963859
A clinical-scale expansion of mobilized CD 34+ hematopoietic stem and progenitor cells by use of a new serum-free medium.
Ivanovic Z, Duchez P, Dazey B, Hermitte F, Lamrissi-Garcia I, Mazurier F, Praloran V, Reiffers J, Vezon G, Boiron JM., Transfusion 46(1), 2006
PMID: 16398741
Cytokine-dependent proliferation of human CD34+ progenitor cells in the absence of serum is suppressed by their progeny's production of serine proteinases.
Goselink HM, Hiemstra PS, van Noort P, Barge RM, Willemze R, Falkenburg JH., Stem Cells 24(2), 2005
PMID: 16109763
Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium.
Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, Bron D, Lagneaux L., Eur. J. Haematol. 76(4), 2006
PMID: 16519702

Korhonen, Eur J Haematol 78(), 2007
Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells.
Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashofer K, Stadelmeyer E, Drexler C, Lanzer G, Linkesch W, Strunk D., Transfusion 47(8), 2007
PMID: 17655588
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18471070
PubMed | Europe PMC

Suchen in

Google Scholar