Evaluation of sulfatase-directed quinone methide traps for proteomics

Lenger J, Schröder M, Ennemann E, Müller B, Wong C-H, Noll T, Dierks T, Hanson SR, Sewald N (2012)
Bioorganic & Medicinal Chemistry 20(2): 622-627.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Sulfatases hydrolytically cleave sulfate esters through a unique catalytic aldehyde, which is introduced by a posttranslational oxidation. To profile active sulfatases in health and disease, activity-based proteomic tools are needed. Herein, quinone methide (QM) traps directed against sulfatases are evaluated as activity-based proteomic probes (ABPPs). Starting from a p-fluoromethylphenyl sulfate scaffold, enzymatically generated QM-traps can inactivate bacterial aryl sulfatases from Pseudomonas aeruginosa and Klebsiella pneumoniae, and human steroid sulfatase. However, multiple enzyme-generated QMs form, diffuse, and non-specifically label purified enzyme. In complex proteomes, QM labeling is sulfatase-dependent but also non-specific. Thus, fluoromethylphenyl sulfates are poor ABPPs for sulfatases.
Erscheinungsjahr
2012
Zeitschriftentitel
Bioorganic & Medicinal Chemistry
Band
20
Ausgabe
2
Seite(n)
622-627
ISSN
0968-0896
Page URI
https://pub.uni-bielefeld.de/record/2351519

Zitieren

Lenger J, Schröder M, Ennemann E, et al. Evaluation of sulfatase-directed quinone methide traps for proteomics. Bioorganic & Medicinal Chemistry. 2012;20(2):622-627.
Lenger, J., Schröder, M., Ennemann, E., Müller, B., Wong, C. - H., Noll, T., Dierks, T., et al. (2012). Evaluation of sulfatase-directed quinone methide traps for proteomics. Bioorganic & Medicinal Chemistry, 20(2), 622-627. https://doi.org/10.1016/j.bmc.2011.04.044
Lenger, Janina, Schröder, Marius, Ennemann, Eva, Müller, Benjamin, Wong, C.-H., Noll, Thomas, Dierks, Thomas, Hanson, Sarah R., and Sewald, Norbert. 2012. “Evaluation of sulfatase-directed quinone methide traps for proteomics”. Bioorganic & Medicinal Chemistry 20 (2): 622-627.
Lenger, J., Schröder, M., Ennemann, E., Müller, B., Wong, C. - H., Noll, T., Dierks, T., Hanson, S. R., and Sewald, N. (2012). Evaluation of sulfatase-directed quinone methide traps for proteomics. Bioorganic & Medicinal Chemistry 20, 622-627.
Lenger, J., et al., 2012. Evaluation of sulfatase-directed quinone methide traps for proteomics. Bioorganic & Medicinal Chemistry, 20(2), p 622-627.
J. Lenger, et al., “Evaluation of sulfatase-directed quinone methide traps for proteomics”, Bioorganic & Medicinal Chemistry, vol. 20, 2012, pp. 622-627.
Lenger, J., Schröder, M., Ennemann, E., Müller, B., Wong, C.-H., Noll, T., Dierks, T., Hanson, S.R., Sewald, N.: Evaluation of sulfatase-directed quinone methide traps for proteomics. Bioorganic & Medicinal Chemistry. 20, 622-627 (2012).
Lenger, Janina, Schröder, Marius, Ennemann, Eva, Müller, Benjamin, Wong, C.-H., Noll, Thomas, Dierks, Thomas, Hanson, Sarah R., and Sewald, Norbert. “Evaluation of sulfatase-directed quinone methide traps for proteomics”. Bioorganic & Medicinal Chemistry 20.2 (2012): 622-627.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Antioxidant properties in a non-polar environment of difluoromethyl bioisosteres of methyl hydroxycinnamates.
Martínez MD, Luna L, Tesio AY, Feresin GE, Durán FJ, Burton G., J Pharm Pharmacol 68(2), 2016
PMID: 26773438

39 References

Daten bereitgestellt von Europe PubMed Central.

Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
Awad HM, Boersma MG, Boeren S, van Bladeren PJ, Vervoort J, Rietjens IM., Chem. Res. Toxicol. 14(4), 2001
PMID: 11304128
Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility.
Hanson SR, Best MD, Wong CH., Angew. Chem. Int. Ed. Engl. 43(43), 2004
PMID: 15493058
Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules.
van Swieten PF, Leeuwenburgh MA, Kessler BM, Overkleeft HS., Org. Biomol. Chem. 3(1), 2004
PMID: 15602593
Steroid sulfatase: molecular biology, regulation, and inhibition.
Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV., Endocr. Rev. 26(2), 2004
PMID: 15561802
Sulfatases and human disease.
Diez-Roux G, Ballabio A., Annu Rev Genomics Hum Genet 6(), 2005
PMID: 16124866
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum. Mol. Genet. 14(21), 2005
PMID: 16174644
Design of a mechanism-based probe for neuraminidase to capture influenza viruses.
Lu CP, Ren CT, Lai YN, Wu SH, Wang WM, Chen JY, Lo LC., Angew. Chem. Int. Ed. Engl. 44(42), 2005
PMID: 16215975
A novel bacterial mucinase, glycosulfatase, is associated with bacterial vaginosis.
Roberton AM, Wiggins R, Horner PJ, Greenwood R, Crowley T, Fernandes A, Berry M, Corfield AP., J. Clin. Microbiol. 43(11), 2005
PMID: 16272477
HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo.
Dai Y, Yang Y, MacLeod V, Yue X, Rapraeger AC, Shriver Z, Venkataraman G, Sasisekharan R, Sanderson RD., J. Biol. Chem. 280(48), 2005
PMID: 16192265
Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer.
Morimoto-Tomita M, Uchimura K, Bistrup A, Lum DH, Egeblad M, Boudreau N, Werb Z, Rosen SD., Neoplasia 7(11), 2005
PMID: 16331886
Chemical tools for activity-based proteomics.
Hagenstein MC, Sewald N., J. Biotechnol. 124(1), 2006
PMID: 16442651
HSulf-1 inhibits angiogenesis and tumorigenesis in vivo.
Narita K, Staub J, Chien J, Meyer K, Bauer M, Friedl A, Ramakrishnan S, Shridhar V., Cancer Res. 66(12), 2006
PMID: 16778174
Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer.
Narita K, Chien J, Mullany SA, Staub J, Qian X, Lingle WL, Shridhar V., J. Biol. Chem. 282(19), 2007
PMID: 17363371
Development of an activity-based probe for steroid sulfatases.
Lu CP, Ren CT, Wu SH, Chu CY, Lo LC., Chembiochem 8(18), 2007
PMID: 17943706
Activity-based protein profiling: new developments and directions in functional proteomics.
Uttamchandani M, Li J, Sun H, Yao SQ., Chembiochem 9(5), 2008
PMID: 18283695
Arylsulfatase G, a novel lysosomal sulfatase.
Frese MA, Schulz S, Dierks T., J. Biol. Chem. 283(17), 2008
PMID: 18283100
The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum.
Mariappan M, Gande SL, Radhakrishnan K, Schmidt B, Dierks T, von Figura K., J. Biol. Chem. 283(17), 2008
PMID: 18305113
Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.
Cravatt BF, Wright AT, Kozarich JW., Annu. Rev. Biochem. 77(), 2008
PMID: 18366325
Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage.
Otsuki S, Taniguchi N, Grogan SP, D'Lima D, Kinoshita M, Lotz M., Arthritis Res. Ther. 10(3), 2008
PMID: 18507859
Activity-based probes as a tool for functional proteomic analysis of proteases.
Fonovic M, Bogyo M., Expert Rev Proteomics 5(5), 2008
PMID: 18937562
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarova P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Using small molecules to dissect mechanisms of microbial pathogenesis.
Puri AW, Bogyo M., ACS Chem. Biol. 4(8), 2009
PMID: 19606820
Peptide-based activity-based probes (ABPs) for target-specific profiling of protein tyrosine phosphatases (PTPs).
Kalesh KA, Tan LP, Lu K, Gao L, Wang J, Yao SQ., Chem. Commun. (Camb.) 46(4), 2009
PMID: 20062871
Natural products and their biological targets: proteomic and metabolomic labeling strategies.
Bottcher T, Pitscheider M, Sieber SA., Angew. Chem. Int. Ed. Engl. 49(15), 2010
PMID: 20333627
Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways.
Otsuki S, Hanson SR, Miyaki S, Grogan SP, Kinoshita M, Asahara H, Wong CH, Lotz MK., Proc. Natl. Acad. Sci. U.S.A. 107(22), 2010
PMID: 20479257
Activity-based protein profiling for biochemical pathway discovery in cancer.
Nomura DK, Dix MM, Cravatt BF., Nat. Rev. Cancer 10(9), 2010
PMID: 20703252
Design and synthesis of activity probes for glycosidases.
Tsai CS, Li YK, Lo LC., Org. Lett. 4(21), 2002
PMID: 12375899
Design and synthesis of class-selective activity probes for protein tyrosine phosphatases.
Lo LC, Pang TL, Kuo CH, Chiang YL, Wang HY, Lin JJ., J. Proteome Res. 1(1), 2002
PMID: 12643524
Developing novel activity-based fluorescent probes that target different classes of proteases.
Zhu Q, Girish A, Chattopadhaya S, Yao SQ., Chem. Commun. (Camb.) (13), 2004
PMID: 15216356
Steroid sulfatase. Biosynthesis and processing in normal and mutant fibroblasts.
Conary J, Nauerth A, Burns G, Hasilik A, von Figura K., Eur. J. Biochem. 158(1), 1986
PMID: 2942400
Suicide inactivation of human prostatic acid phosphatase and a phosphotyrosine phosphatase.
Wang Q, Dechert U, Jirik F, Withers SG., Biochem. Biophys. Res. Commun. 200(1), 1994
PMID: 8166732
4-(Fluoromethyl)phenyl phosphate acts as a mechanism-based inhibitor of calcineurin.
Born TL, Myers JK, Widlanski TS, Rusnak F., J. Biol. Chem. 270(43), 1995
PMID: 7592741
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923
The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
Szameit C, Miech C, Balleininger M, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 274(22), 1999
PMID: 10336424
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21570853
PubMed | Europe PMC

Suchen in

Google Scholar