Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots

Walhorn V, Paskarbeit J, Frey H, Harder A, Anselmetti D (2011)
Beilstein Journal of Nanotechnology 2: 645-652.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In fluorescence microscopy and spectroscopy, energy transfer processes between single fluorophores and fluorophore quencher pairs play an important role in the investigation of molecular distances or orientations. At distances larger than about 3 nm these effects originate predominantly from dipolar coupling. As these experiments are commonly performed in homogenous media, effects at the interface boundaries can be neglected. Nevertheless, the combination of such assays with single-molecule manipulation techniques such as atomic force microscopy (AFM) requires a detailed understanding of the influence of interfaces on dipolar coupling effects. In the presented work we used a combined total internal reflection fluorescence microscopy (TIRFM)-AFM setup to elucidate this issue. We measured the fluorescence emission emanating from single quantum dots as a function of distance from the apex of a gold-coated cantilever tip. As well as fluorescence quenching at close proximity to the tip, we found a nonlinear and nonmonotonic distance dependence of the fluorescence emission. To confirm and interpret our findings we performed calculations on the basis of a simplified multiple multipole (MMP) approach, which successfully supports our experimental data. Moreover, we revealed and quantified the influence of interfering processes such as field enhancement confined at interface boundaries, mirror dipoles and (resonant) dipolar coupling.
Erscheinungsjahr
2011
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
2
Seite(n)
645-652
ISSN
2190-4286
eISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2310883

Zitieren

Walhorn V, Paskarbeit J, Frey H, Harder A, Anselmetti D. Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots. Beilstein Journal of Nanotechnology. 2011;2:645-652.
Walhorn, V., Paskarbeit, J., Frey, H., Harder, A., & Anselmetti, D. (2011). Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots. Beilstein Journal of Nanotechnology, 2, 645-652. https://doi.org/10.3762/bjnano.2.68
Walhorn, Volker, Paskarbeit, Jan, Frey, Heinrich, Harder, Alexander, and Anselmetti, Dario. 2011. “Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots”. Beilstein Journal of Nanotechnology 2: 645-652.
Walhorn, V., Paskarbeit, J., Frey, H., Harder, A., and Anselmetti, D. (2011). Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots. Beilstein Journal of Nanotechnology 2, 645-652.
Walhorn, V., et al., 2011. Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots. Beilstein Journal of Nanotechnology, 2, p 645-652.
V. Walhorn, et al., “Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots”, Beilstein Journal of Nanotechnology, vol. 2, 2011, pp. 645-652.
Walhorn, V., Paskarbeit, J., Frey, H., Harder, A., Anselmetti, D.: Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots. Beilstein Journal of Nanotechnology. 2, 645-652 (2011).
Walhorn, Volker, Paskarbeit, Jan, Frey, Heinrich, Harder, Alexander, and Anselmetti, Dario. “Distance Dependence of Near-field Fluorescence Enhancement and Quenching of Single Quantum Dots”. Beilstein Journal of Nanotechnology 2 (2011): 645-652.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effects of silver nanoparticles with different sizes on photochemical responses of polythiophene-fullerene thin films.
You J, Leonard K, Takahashi Y, Yonemura H, Yamada S., Phys Chem Chem Phys 16(3), 2014
PMID: 24292622
Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.
Kern AM, Zhang D, Brecht M, Chizhik AI, Failla AV, Wackenhut F, Meixner AJ., Chem Soc Rev 43(4), 2014
PMID: 24365864
Near-field effects and energy transfer in hybrid metal-oxide nanostructures.
Herr U, Kuerbanjiang B, Benel C, Papageorgiou G, Goncalves M, Boneberg J, Leiderer P, Ziemann P, Marek P, Hahn H., Beilstein J Nanotechnol 4(), 2013
PMID: 23766954
Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin.
Harder A, Dieding M, Walhorn V, Degenhard S, Brodehl A, Wege C, Milting H, Anselmetti D., Beilstein J Nanotechnol 4(), 2013
PMID: 24062977
Polarization properties of a CdSe/ZnS and Au nanoparticle dimer.
Ratchford D, Shafiei F, Gray SK, Li X., Chemphyschem 13(10), 2012
PMID: 22461237
Controlled positioning of nanoparticles on a micrometer scale.
Enderle F, Dubbers O, Plettl A, Ziemann P., Beilstein J Nanotechnol 3(), 2012
PMID: 23213640

35 References

Daten bereitgestellt von Europe PubMed Central.


Förster T., 1948
Energy transfer: a spectroscopic ruler.
Stryer L, Haugland RP., Proc. Natl. Acad. Sci. U.S.A. 58(2), 1967
PMID: 5233469
Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules.
Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S., Proc. Natl. Acad. Sci. U.S.A. 101(24), 2004
PMID: 15175430
Atomic force microscope.
Binnig G, Quate CF, Gerber C., Phys. Rev. Lett. 56(9), 1986
PMID: 10033323
Observation of a single-beam gradient force optical trap for dielectric particles.
Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S., Opt Lett 11(5), 1986
PMID: 19730608
Single-molecule optomechanical cycle.
Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE., Science 296(5570), 2002
PMID: 12004125
Photoswitchable cyan fluorescent protein for protein tracking.
Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA., Nat. Biotechnol. 22(11), 2004
PMID: 15502815
Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips.
Eckel R, Walhorn V, Pelargus C, Martini J, Enderlein J, Nann T, Anselmetti D, Ros R., Small 3(1), 2007
PMID: 17294466
Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa.
Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J., Proc. Natl. Acad. Sci. U.S.A. 102(27), 2005
PMID: 15972810
Single photons on demand from a single molecule at room temperature.
Lounis B, Moerner WE., Nature 407(6803), 2000
PMID: 11028995
Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror.
Buchler BC, Kalkbrenner T, Hettich C, Sandoghdar V., Phys. Rev. Lett. 95(6), 2005
PMID: 16090945
Enhancement and quenching of single-molecule fluorescence.
Anger P, Bharadwaj P, Novotny L., Phys. Rev. Lett. 96(11), 2006
PMID: 16605818
Influencing the angular emission of a single molecule.
Gersen H, Garcia-Parajo MF, Novotny L, Veerman JA, Kuipers L, van Hulst NF ., Phys. Rev. Lett. 85(25), 2000
PMID: 11135984

Lee J, Govorov A, Dulka J, Kotov N., 2004
Forbidden light detection from single molecules
Ruckstuhl T, Enderlein J, Jung S, Seeger S., Anal. Chem. 72(9), 2000
PMID: 10815974

Axelrod D, Thompson N, Burghardt T., 1983
Nanoparticle assemblies with molecular springs: a nanoscale thermometer.
Lee J, Govorov AO, Kotov NA., Angew. Chem. Int. Ed. Engl. 44(45), 2005
PMID: 16231378
Binding strength between cell adhesion proteoglycans measured by atomic force microscopy.
Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt HJ, Misevic GN., Science 267(5201), 1995
PMID: 7855599
Supramolecular chemistry at the single-molecule level.
Eckel R, Ros R, Decker B, Mattay J, Anselmetti D., Angew. Chem. Int. Ed. Engl. 44(3), 2005
PMID: 15624136
Single-molecule experiments in synthetic biology: an approach to the affinity ranking of DNA-binding peptides.
Eckel R, Wilking SD, Becker A, Sewald N, Ros R, Anselmetti D., Angew. Chem. Int. Ed. Engl. 44(25), 2005
PMID: 15906400
Adhesion forces between individual ligand-receptor pairs.
Florin EL, Moy VT, Gaub HE., Science 264(5157), 1994
PMID: 8153628
Direct measurement of the forces between complementary strands of DNA.
Lee GU, Chrisey LA, Colton RJ., Science 266(5186), 1994
PMID: 7973628
Antigen binding forces of individually addressed single-chain Fv antibody molecules.
Ros R, Schwesinger F, Anselmetti D, Kubon M, Schafer R, Pluckthun A, Tiefenauer L., Proc. Natl. Acad. Sci. U.S.A. 95(13), 1998
PMID: 9636161
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE., Science 276(5315), 1997
PMID: 9148804

Ebenstein Y, Mokari T, Banin U., 2004

Eckel R, Walhorn V, Pelargus C, Martini J, Anselmetti D, Ros R, Nann T., 2006

Walhorn V, Schulz O, Pelargus C, Anselmetti A, Ros R., 2007

Nann T., 2005

Jackson J., 1998

Hafner C., 1986

Novotny L, Hecht B., 2006

Kretschmann E, Raether H., 1968

Weber M., 2002
Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling.
Zhang D, Heinemeyer U, Stanciu C, Sackrow M, Braun K, Hennemann LE, Wang X, Scholz R, Schreiber F, Meixner AJ., Phys. Rev. Lett. 104(5), 2010
PMID: 20366779
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22003470
PubMed | Europe PMC

Suchen in

Google Scholar