Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus

Tovar-Mendez A, Matamoros MA, Bustos-Sanmamed P, Dietz K-J, Javier Cejudo F, Rouhier N, Sato S, Tabata S, Becana M (2011)
PLANT PHYSIOLOGY 156(3): 1535-1547.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thioldisulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.
Erscheinungsjahr
Zeitschriftentitel
PLANT PHYSIOLOGY
Band
156
Ausgabe
3
Seite(n)
1535-1547
ISSN
eISSN
PUB-ID

Zitieren

Tovar-Mendez A, Matamoros MA, Bustos-Sanmamed P, et al. Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY. 2011;156(3):1535-1547.
Tovar-Mendez, A., Matamoros, M. A., Bustos-Sanmamed, P., Dietz, K. - J., Javier Cejudo, F., Rouhier, N., Sato, S., et al. (2011). Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY, 156(3), 1535-1547. doi:10.1104/pp.111.177196
Tovar-Mendez, A., Matamoros, M. A., Bustos-Sanmamed, P., Dietz, K. - J., Javier Cejudo, F., Rouhier, N., Sato, S., Tabata, S., and Becana, M. (2011). Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY 156, 1535-1547.
Tovar-Mendez, A., et al., 2011. Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY, 156(3), p 1535-1547.
A. Tovar-Mendez, et al., “Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus”, PLANT PHYSIOLOGY, vol. 156, 2011, pp. 1535-1547.
Tovar-Mendez, A., Matamoros, M.A., Bustos-Sanmamed, P., Dietz, K.-J., Javier Cejudo, F., Rouhier, N., Sato, S., Tabata, S., Becana, M.: Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY. 156, 1535-1547 (2011).
Tovar-Mendez, Alejandro, Matamoros, Manuel A., Bustos-Sanmamed, Pilar, Dietz, Karl-Josef, Javier Cejudo, Francisco, Rouhier, Nicolas, Sato, Shusei, Tabata, Satoshi, and Becana, Manuel. “Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus”. PLANT PHYSIOLOGY 156.3 (2011): 1535-1547.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sulfur Transport and Metabolism in Legume Root Nodules.
Becana M, Wienkoop S, Matamoros MA., Front Plant Sci 9(), 2018
PMID: 30364181
Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.
Alloing G, Mandon K, Boncompagni E, Montrichard F, Frendo P., Antioxidants (Basel) 7(12), 2018
PMID: 30563061
Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk.
Tognetti VB, Bielach A, Hrtyan M., Plant Cell Environ 40(11), 2017
PMID: 28708264
Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit.
Li T, Zhang J, Zhu H, Qu H, You S, Duan X, Jiang Y., Front Plant Sci 7(), 2016
PMID: 27303420
Function of glutathione peroxidases in legume root nodules.
Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M., J Exp Bot 66(10), 2015
PMID: 25740929
Mitochondria are an early target of oxidative modifications in senescing legume nodules.
Matamoros MA, Fernández-García N, Wienkoop S, Loscos J, Saiz A, Becana M., New Phytol 197(3), 2013
PMID: 23206179
Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis.
Wang P, Liu J, Liu B, Feng D, Da Q, Wang P, Shu S, Su J, Zhang Y, Wang J, Wang HB., Plant Physiol 163(4), 2013
PMID: 24151299
Gene expression in the developing aleurone and starchy endosperm of wheat.
Gillies SA, Futardo A, Henry RJ., Plant Biotechnol J 10(6), 2012
PMID: 22672716
Cellular Stress Following Water Deprivation in the Model Legume Lotus japonicus.
Betti M, Pérez-Delgado C, García-Calderón M, Díaz P, Monza J, Márquez AJ., Cells 1(4), 2012
PMID: 24710544

70 References

Daten bereitgestellt von Europe PubMed Central.

A novel type of thioredoxin dedicated to symbiosis in legumes.
Alkhalfioui F, Renard M, Frendo P, Keichinger C, Meyer Y, Gelhaye E, Hirasawa M, Knaff DB, Ritzenthaler C, Montrichard F., Plant Physiol. 148(1), 2008
PMID: 18614707
Unique properties of NADP-thioredoxin reductase C in legumes.
Alkhalfioui F, Renard M, Montrichard F., J. Exp. Bot. 58(5), 2006
PMID: 17185738
A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts.
Balmer Y, Vensel WH, Cai N, Manieri W, Schurmann P, Hurkman WJ, Buchanan BB., Proc. Natl. Acad. Sci. U.S.A. 103(8), 2006
PMID: 16481623
Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.
Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lazaro JJ, Dietz KJ., J. Exp. Bot. 59(12), 2008
PMID: 18632730
Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum.
Barranco-Medina S, Krell T, Finkemeier I, Sevilla F, Lazaro JJ, Dietz KJ., Plant Physiol. Biochem. 45(10-11), 2007
PMID: 17881238
Recent insights into antioxidant defenses of legume root nodules.
Becana M, Matamoros MA, Udvardi M, Dalton DA., New Phytol. 188(4), 2010
PMID: 21039567
New insights into nitric oxide signaling in plants.
Besson-Bard A, Pugin A, Wendehenne D., Annu Rev Plant Biol 59(), 2008
PMID: 18031216
Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones.
Bustos-Sanmamed P, Tovar-Mendez A, Crespi M, Sato S, Tabata S, Becana M., New Phytol. 189(3), 2010
PMID: 21073469
NO signalling in cytokinin-induced programmed cell death
Carimi F, Zottini M, Costa A, Cattelan I, De R, Terzi M, Lo F., 2005
Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR., Plant Physiol. 139(1), 2005
PMID: 16166256
Structural Basis of Redox Signaling in Photosynthesis: Structure and Function of Ferredoxin:thioredoxin Reductase and Target Enzymes.
Dai S, Johansson K, Miginiac-Maslow M, Schurmann P, Eklund H., Photosyn. Res. 79(3), 2004
PMID: 16328790
Antioxidant defenses in the peripheral cell layers of legume root nodules.
Dalton DA, Joyner SL, Becana M, Iturbe-Ormaetxe I, Chatfield JM., Plant Physiol. 116(1), 1998
PMID: 9449834
Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes.
del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB., J. Exp. Bot. 53(372), 2002
PMID: 11997374
Triggering the cell cycle in plants.
den Boer BG, Murray JA., Trends Cell Biol. 10(6), 2000
PMID: 10802540
Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.
Vivancos PD, Dong Y, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Verrier PJ, Foyer CH., Plant J. 64(5), 2010
PMID: 21105929
Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages.
Diet A, Abbas K, Bouton C, Guillon B, Tomasello F, Fourquet S, Toledano MB, Drapier JC., J. Biol. Chem. 282(50), 2007
PMID: 17921138
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context
Foyer CH, Noctor G., 2005
The mitochondrial type II peroxiredoxin from poplar
Gama F, Keech O, Eymery F, Finkemeier I, Gelhaye E, Gardestrom P, Dietz KJ, Rey P, Jacquot JP, Rouhier N., Physiol Plant 129(1), 2007
PMID: IND43860515
The thioredoxin h system of higher plants.
Gelhaye E, Rouhier N, Jacquot JP., Plant Physiol. Biochem. 42(4), 2004
PMID: 15120110
Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.
Groten K, Dutilleul C, van Heerden PD, Vanacker H, Bernard S, Finkemeier I, Dietz KJ, Foyer CH., FEBS Lett. 580(5), 2006
PMID: 16455082
Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress.
Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB., Plant Physiol. 133(3), 2003
PMID: 14526116
Developmental biology of legume nodulation
Hirsch AM., 1992
Spectral counting robust on high mass accuracy mass spectrometers.
Hoehenwarter W, Wienkoop S., Rapid Commun. Mass Spectrom. 24(24), 2010
PMID: 21108307
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
The antioxidants of legume nodule mitochondria.
Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Dalton DA, Becana M., Mol. Plant Microbe Interact. 14(10), 2001
PMID: 11605958
Identification and characterization of a mitochondrial thioredoxin system in plants.
Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y., Proc. Natl. Acad. Sci. U.S.A. 98(24), 2001
PMID: 11717467
Nitric oxide: the versatility of an extensive signal molecule.
Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G., Annu Rev Plant Biol 54(), 2003
PMID: 14502987
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, Gonzalez EM., Plant Physiol. 144(3), 2007
PMID: 17545507
Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots.
Lee MY, Shin KH, Kim YK, Suh JY, Gu YY, Kim MR, Hur YS, Son O, Kim JS, Song E, Lee MS, Nam KH, Hwang KH, Sung MK, Kim HJ, Chun JY, Park M, Ahn TI, Hong CB, Lee SH, Park HJ, Park JS, Verma DP, Cheon CI., Plant Physiol. 139(4), 2005
PMID: 16299179
NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+ -dependent isocitrate dehydrogenase.
Marino D, Gonzalez EM, Frendo P, Puppo A, Arrese-Igor C., Planta 225(2), 2006
PMID: 16896792
The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis.
Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R., Proc. Natl. Acad. Sci. U.S.A. 106(22), 2009
PMID: 19451637
Function of antioxidant enzymes and metabolites during maturation of pea fruits.
Matamoros MA, Loscos J, Dietz KJ, Aparicio-Tejo PM, Becana M., J. Exp. Bot. 61(1), 2010
PMID: 19822534
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.
Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P., Proc. Natl. Acad. Sci. U.S.A. 106(24), 2009
PMID: 19470473
Oxidative stress, antioxidants and stress tolerance.
Mittler R., Trends Plant Sci. 7(9), 2002
PMID: 12234732
The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts.
Moon JC, Jang HH, Chae HB, Lee JR, Lee SY, Jung YJ, Shin MR, Lim HS, Chung WS, Yun DJ, Lee KO, Lee SY., Biochem. Biophys. Res. Commun. 348(2), 2006
PMID: 16884685
Nitric oxide, stomatal closure, and abiotic stress.
Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I., J. Exp. Bot. 59(2), 2008
PMID: 18332225
Circadian rhythms persist without transcription in a eukaryote.
O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ., Nature 469(7331), 2011
PMID: 21270895
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ., J. Exp. Bot. 61(14), 2010
PMID: 20616155
Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination.
Puntarulo S, Sanchez RA, Boveris A., Plant Physiol. 86(2), 1988
PMID: 16665958
Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process.
Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH., New Phytol. 165(3), 2005
PMID: 15720680
AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana.
Reichheld JP, Meyer E, Khafif M, Bonnard G, Meyer Y., FEBS Lett. 579(2), 2005
PMID: 15642341
Identification and characterization of thioredoxin h isoforms differentially expressed in germinating seeds of the model legume Medicago truncatula.
Renard M, Alkhalfioui F, Schmitt-Keichinger C, Ritzenthaler C, Montrichard F., Plant Physiol. 155(3), 2011
PMID: 21239621
How do cytokinins affect the cell?
Romanov GA., 2009
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.
Rouhier N, Gelhaye E, Gualberto JM, Jordy MN, De Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot JP., Plant Physiol. 134(3), 2004
PMID: 14976238
The plant multigenic family of thiol peroxidases.
Rouhier N, Jacquot JP., Free Radic. Biol. Med. 38(11), 2005
PMID: 15890615
Genome structure of the legume, Lotus japonicus.
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S., DNA Res. 15(4), 2008
PMID: 18511435
PLANT THIOREDOXIN SYSTEMS REVISITED.
Schurmann P, Jacquot JP., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012197
Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues.
Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A., J. Exp. Bot. 59(6), 2008
PMID: 18356145
Rapid increase of NO release in plant cell cultures induced by cytokinin.
Tun NN, Holk A, Scherer GF., FEBS Lett. 509(2), 2001
PMID: 11741583
Nitrosative stress in plants.
Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gomez-Rodriguez MV, Colmenero-Varea P, Del Rio LA, Barroso JB., FEBS Lett. 581(3), 2007
PMID: 17240373
Plant thioredoxins are key actors in the oxidative stress response.
Vieira Dos Santos C, Rey P., Trends Plant Sci. 11(7), 2006
PMID: 16782394
Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence.
Zavaleta-Mancera HA, Lopez-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-Garcia C, Vargas-Suarez M, Ougham H., J. Plant Physiol. 164(12), 2007
PMID: 17485137

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21562331
PubMed | Europe PMC

Suchen in

Google Scholar