A Normalized Tree Index for identification of correlated clinical parameters in microarray data

Martin C, Tauchen A, Becker A, Nattkemper TW (2011)
BioData Mining 4(1): 2.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Martin, ChristianUniBi; Tauchen, Annika; Becker, Anke; Nattkemper, Tim WilhelmUniBi
Abstract / Bemerkung
BACKGROUND: Measurements on gene level are widely used to gain new insights in complex diseases e.g. cancer. A promising approach to understand basic biological mechanisms is to combine gene expression profiles and classical clinical parameters. However, the computation of a correlation coefficient between high-dimensional data and such parameters is not covered by traditional statistical methods. METHODS: We propose a novel index, the Normalized Tree Index (NTI), to compute a correlation coefficient between the clustering result of high-dimensional microarray data and nominal clinical parameters. The NTI detects correlations between hierarchically clustered microarray data and nominal clinical parameters (labels) and gives a measurement of significance in terms of an empiric p-value of the identified correlations. Therefore, the microarray data is clustered by hierarchical agglomerative clustering using standard settings. In a second step, the computed cluster tree is evaluated. For each label, a NTI is computed measuring the correlation between that label and the clustered microarray data. RESULTS: The NTI successfully identifies correlated clinical parameters at different levels of significance when applied on two real-world microarray breast cancer data sets. Some of the identified highly correlated labels confirm the actual state of knowledge whereas others help to identify new risk factors and provide a good basis to formulate new hypothesis. CONCLUSIONS: The NTI is a valuable tool in the domain of biomedical data analysis. It allows the identification of correlations between high-dimensional data and nominal labels, while at the same time a p-value measures the level of significance of the detected correlations.
Erscheinungsjahr
2011
Zeitschriftentitel
BioData Mining
Band
4
Ausgabe
1
Art.-Nr.
2
ISSN
1756-0381
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2300073

Zitieren

Martin C, Tauchen A, Becker A, Nattkemper TW. A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining. 2011;4(1): 2.
Martin, C., Tauchen, A., Becker, A., & Nattkemper, T. W. (2011). A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining, 4(1), 2. https://doi.org/10.1186/1756-0381-4-2
Martin, Christian, Tauchen, Annika, Becker, Anke, and Nattkemper, Tim Wilhelm. 2011. “A Normalized Tree Index for identification of correlated clinical parameters in microarray data”. BioData Mining 4 (1): 2.
Martin, C., Tauchen, A., Becker, A., and Nattkemper, T. W. (2011). A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining 4:2.
Martin, C., et al., 2011. A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining, 4(1): 2.
C. Martin, et al., “A Normalized Tree Index for identification of correlated clinical parameters in microarray data”, BioData Mining, vol. 4, 2011, : 2.
Martin, C., Tauchen, A., Becker, A., Nattkemper, T.W.: A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining. 4, : 2 (2011).
Martin, Christian, Tauchen, Annika, Becker, Anke, and Nattkemper, Tim Wilhelm. “A Normalized Tree Index for identification of correlated clinical parameters in microarray data”. BioData Mining 4.1 (2011): 2.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:36Z
MD5 Prüfsumme
74e0e5222ba45292252f073c75d1a934


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.
Alvarez-Silva MC, Álvarez-Yela AC, Gómez-Cano F, Zambrano MM, Husserl J, Danies G, Restrepo S, González-Barrios AF., PLoS One 12(8), 2017
PMID: 28767679

28 References

Daten bereitgestellt von Europe PubMed Central.

Cluster analysis and display of genome-wide expression patterns.
Eisen MB, Spellman PT, Brown PO, Botstein D., Proc. Natl. Acad. Sci. U.S.A. 95(25), 1998
PMID: 9843981
Molecular portraits of human breast tumours.
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D., Nature 406(6797), 2000
PMID: 10963602
A reference guide for tree analysis and visualization.
Pavlopoulos GA, Soldatos TG, Barbosa-Silva A, Schneider R., BioData Min 3(1), 2010
PMID: 20175922
Computational analysis of microarray data.
Quackenbush J., Nat. Rev. Genet. 2(6), 2001
PMID: 11389458
Microarrays in Cancer: Research and Applications
AUTHOR UNKNOWN, 2003
Gene expression profiling predicts clinical outcome of breast cancer.
van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH., Nature 415(6871), 2002
PMID: 11823860
Gene expression predictors of breast cancer outcomes.
Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild A, Iversen ES, Liao M, Chen CM, West M, Nevins JR, Huang AT., Lancet 361(9369), 2003
PMID: 12747878
Clinical Knowledge Discovery in Hospital Information Systems: Two Case Studies
AUTHOR UNKNOWN, 2000
Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
AUTHOR UNKNOWN, 1915

AUTHOR UNKNOWN, 2002
A New Measure of Rank Correlation
AUTHOR UNKNOWN, 1938
A Tree Index to Support Clustering Based Exploratory Data Analysis
AUTHOR UNKNOWN, 2008
On Clustering Validation Techniques
AUTHOR UNKNOWN, 2001
Computational cluster validation in post-genomic data analysis.
Handl J, Knowles J, Kell DB., Bioinformatics 21(15), 2005
PMID: 15914541
Clustering-based approaches to SAGE data mining.
Wang H, Zheng H, Azuaje F., BioData Min 1(1), 2008
PMID: 18822151

AUTHOR UNKNOWN, 1997
A gene-expression signature as a predictor of survival in breast cancer.
van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R., N. Engl. J. Med. 347(25), 2002
PMID: 12490681
Rosetta Inpharmatics
AUTHOR UNKNOWN, 0
Target-oriented microarray analysis for detailed characterization of high-risk breast tumors
AUTHOR UNKNOWN, 2008
Genexpressionsanalysen zur Charakterisierung primaerer Mammatumoren im neoadjuvanten Setting
AUTHOR UNKNOWN, 2009
Estrogen receptor: a prognostic factor in breast cancer.
Samaan NA, Buzdar AU, Aldinger KA, Schultz PN, Yang KP, Romsdahl MM, Martin R., Cancer 47(3), 1981
PMID: 7226005
Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005.
Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ; Panel members., Ann. Oncol. 16(10), 2005
PMID: 16148022
[Prognostic and predictive factors of invasive breast cancer: update 2009].
Decker T, Hungermann D, Bocker W., Pathologe 30(1), 2009
PMID: 19184022
Breast cancer gene expression profiling: clinical trial and practice implications.
Loi S, Desmedt C, Cardoso F, Piccart M, Sotiriou C., Pharmacogenomics 6(1), 2005
PMID: 15723605
Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.
Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M., J. Natl. Cancer Inst. 98(4), 2006
PMID: 16478745
Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms.
Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Borresen-Dale AL., BMC Genomics 7(), 2006
PMID: 16729877
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21247420
PubMed | Europe PMC

Suchen in

Google Scholar