Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis

Niklas J, Skerhutt EM, Sandig V, Noll T, Heinzle E (2011)
Bioprocess and Biosystems Engineering 34(5): 533-545.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Niklas, Jens; Skerhutt, Eva MariaUniBi; Sandig, Volker; Noll, ThomasUniBi ; Heinzle, Elmar
Abstract / Bemerkung
For the improved production of vaccines and therapeutic proteins, a detailed understanding of the metabolic dynamics during batch or fed-batch production is requested. To study the new human cell line AGE1.HN, a flexible metabolic flux analysis method was developed that is considering dynamic changes in growth and metabolism during cultivation. This method comprises analysis of formation of cellular components as well as conversion of major substrates and products, spline fitting of dynamic data and flux estimation using metabolite balancing. During batch cultivation of AGE1.HN three distinct phases were observed, an initial one with consumption of pyruvate and high glycolytic activity, a second characterized by a highly efficient metabolism with very little energy spilling waste production and a third with glutamine limitation and decreasing viability. Main events triggering changes in cellular metabolism were depletion of pyruvate and glutamine. Potential targets for the improvement identified from the analysis are (i) reduction of overflow metabolism in the beginning of cultivation, e.g. accomplished by reduction of pyruvate content in the medium and (ii) prolongation of phase 2 with its highly efficient energy metabolism applying e.g. specific feeding strategies. The method presented allows fast and reliable metabolic flux analysis during the development of producer cells and production processes from microtiter plate to large scale reactors with moderate analytical and computational effort. It seems well suited to guide media optimization and genetic engineering of producing cell lines.
Stichworte
Cell culture; Production; Mammalian cell; Kinetics; Metabolic engineering; Growth phases
Erscheinungsjahr
2011
Zeitschriftentitel
Bioprocess and Biosystems Engineering
Band
34
Ausgabe
5
Seite(n)
533-545
ISSN
1615-7591
eISSN
1615-7605
Page URI
https://pub.uni-bielefeld.de/record/2289895

Zitieren

Niklas J, Skerhutt EM, Sandig V, Noll T, Heinzle E. Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess and Biosystems Engineering. 2011;34(5):533-545.
Niklas, J., Skerhutt, E. M., Sandig, V., Noll, T., & Heinzle, E. (2011). Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess and Biosystems Engineering, 34(5), 533-545. doi:10.1007/s00449-010-0502-y
Niklas, J., Skerhutt, E. M., Sandig, V., Noll, T., and Heinzle, E. (2011). Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess and Biosystems Engineering 34, 533-545.
Niklas, J., et al., 2011. Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess and Biosystems Engineering, 34(5), p 533-545.
J. Niklas, et al., “Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis”, Bioprocess and Biosystems Engineering, vol. 34, 2011, pp. 533-545.
Niklas, J., Skerhutt, E.M., Sandig, V., Noll, T., Heinzle, E.: Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess and Biosystems Engineering. 34, 533-545 (2011).
Niklas, Jens, Skerhutt, Eva Maria, Sandig, Volker, Noll, Thomas, and Heinzle, Elmar. “Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis”. Bioprocess and Biosystems Engineering 34.5 (2011): 533-545.

37 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of magnetic field in the biopharmaceutical production: Current perspectives.
Rekena A, Didrihsone E, Vegere K., Biotechnol Rep (Amst) 22(), 2019
PMID: 31011551
An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells.
Chen Y, McConnell BO, Gayatri Dhara V, Mukesh Naik H, Li CT, Antoniewicz MR, Betenbaugh MJ., NPJ Syst Biol Appl 5(), 2019
PMID: 31341637
Impact of host cell line choice on glycan profile.
Goh JB, Ng SK., Crit Rev Biotechnol 38(6), 2018
PMID: 29262720
Segmented linear modeling of CHO fed-batch culture and its application to large scale production.
Ben Yahia B, Gourevitch B, Malphettes L, Heinzle E., Biotechnol Bioeng 114(4), 2017
PMID: 27869296
Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data.
Cinquemani E, Laroute V, Cocaign-Bousquet M, de Jong H, Ropers D., Bioinformatics 33(14), 2017
PMID: 28881984
Metabolic characterization of a CHO cell size increase phase in fed-batch cultures.
Pan X, Dalm C, Wijffels RH, Martens DE., Appl Microbiol Biotechnol 101(22), 2017
PMID: 28951949
Dynamic metabolic flux analysis using a convex analysis approach: Application to hybridoma cell cultures in perfusion.
Fernandes de Sousa S, Bastin G, Jolicoeur M, Vande Wouwer A., Biotechnol Bioeng 113(5), 2016
PMID: 26551676
Identifying model error in metabolic flux analysis - a generalized least squares approach.
Sokolenko S, Quattrociocchi M, Aucoin MG., BMC Syst Biol 10(1), 2016
PMID: 27619919
Normalizing glutamine concentration causes mitochondrial uncoupling in an in vitro model of human skeletal muscle.
Krajcova A, Ziak J, Jiroutkova K, Patkova J, Elkalaf M, Dzupa V, Trnka J, Duska F., JPEN J Parenter Enteral Nutr 39(2), 2015
PMID: 24291738
CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics.
Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, Xin C, Liu X, Li G, Jiang J, Li C, Li R, Han M, You S, Yu G, Yi Y, Wen H, Liu Z, Xie X., Nucleic Acids Res 43(database issue), 2015
PMID: 25392417
Methods and advances in metabolic flux analysis: a mini-review.
Antoniewicz MR., J Ind Microbiol Biotechnol 42(3), 2015
PMID: 25613286
Insights into pH-induced metabolic switch by flux balance analysis.
Ivarsson M, Noh H, Morbidelli M, Soos M., Biotechnol Prog 31(2), 2015
PMID: 25906421
Macroscopic modeling of mammalian cell growth and metabolism.
Ben Yahia B, Malphettes L, Heinzle E., Appl Microbiol Biotechnol 99(17), 2015
PMID: 26198881
Changes in intracellular metabolite pools during growth of adherent MDCK cells in two different media.
Rehberg M, Rath A, Ritter JB, Genzel Y, Reichl U., Appl Microbiol Biotechnol 98(1), 2014
PMID: 24169951
Dynamics of growth and metabolism controlled by glutamine availability in Chinese hamster ovary cells.
Wahrheit J, Nicolae A, Heinzle E., Appl Microbiol Biotechnol 98(4), 2014
PMID: 24362913
Molecular physiology of the dynamic regulation of carbon catabolite repression in Escherichia coli.
Borirak O, Bekker M, Hellingwerf KJ., Microbiology 160(pt 6), 2014
PMID: 24603062
The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.
Rath AG, Rehberg M, Janke R, Genzel Y, Scholz S, Noll T, Rose T, Sandig V, Reichl U., J Biotechnol 178(), 2014
PMID: 24657347
The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis.
Lohr V, Hädicke O, Genzel Y, Jordan I, Büntemeyer H, Klamt S, Reichl U., BMC Biotechnol 14(), 2014
PMID: 25077436
Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells.
Rehberg M, Ritter JB, Reichl U., PLoS Comput Biol 10(10), 2014
PMID: 25329309
Metabolism and metabolic burden by α1-antitrypsin production in human AGE1.HN cells.
Niklas J, Priesnitz C, Rose T, Sandig V, Heinzle E., Metab Eng 16(), 2013
PMID: 23376655
Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition.
Carinhas N, Duarte TM, Barreiro LC, Carrondo MJ, Alves PM, Teixeira AP., Biotechnol Bioeng 110(12), 2013
PMID: 23794452
Expression of recombinant antibodies.
Frenzel A, Hust M, Schirrmann T., Front Immunol 4(), 2013
PMID: 23908655
Towards dynamic metabolic flux analysis in CHO cell cultures.
Ahn WS, Antoniewicz MR., Biotechnol J 7(1), 2012
PMID: 22102428
Isotope labeling experiments in metabolomics and fluxomics.
Klein S, Heinzle E., Wiley Interdiscip Rev Syst Biol Med 4(3), 2012
PMID: 22447740
Compartmentation and channelling of metabolites in the human cell line AGE1.HN(®).
Niklas J, Sandig V, Heinzle E., BMC Proc 5 Suppl 8(), 2011
PMID: 22373369
Producer vs. parental cell - metabolic changes and burden upon α1-antitrypsin production in AGE1.HN(®).
Niklas J, Priesnitz C, Sandig V, Rose T, Heinzle E., BMC Proc 5 Suppl 8(), 2011
PMID: 22373391

60 References

Daten bereitgestellt von Europe PubMed Central.

Systems biotechnology of mammalian cell factories.
O'Callaghan PM, James DC., Brief Funct Genomic Proteomic 7(2), 2008
PMID: 18326543
Microbial factories for recombinant pharmaceuticals.
Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A., Microb. Cell Fact. 8(), 2009
PMID: 19317892
Recombinant protein therapeutics--success rates, market trends and values to 2010.
Pavlou AK, Reichert JM., Nat. Biotechnol. 22(12), 2004
PMID: 15583654
Biopharmaceutical benchmarks 2006.
Walsh G., Nat. Biotechnol. 24(7), 2006
PMID: 16841057

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Apoptosis in cell culture.
al-Rubeai M, Singh RP., Curr. Opin. Biotechnol. 9(2), 1998
PMID: 9588004
Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells.
Fogolin MB, Wagner R, Etcheverrigaray M, Kratje R., J. Biotechnol. 109(1-2), 2004
PMID: 15063626
Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors.
Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D., Biotechnol. Bioeng. 94(6), 2006
PMID: 16736530
Effect of N-Acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-beta-1a.
Oh HK, So MK, Yang J, Yoon HC, Ahn JS, Lee JM, Kim JT, Yoo JU, Byun TH., Biotechnol. Prog. 21(4), 2005
PMID: 16080696
An avian cell line designed for production of highly attenuated viruses.
Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V., Vaccine 27(5), 2008
PMID: 19071186
Metabolic networks in motion: 13C-based flux analysis.
Sauer U., Mol. Syst. Biol. 2(), 2006
PMID: 17102807
It is all about metabolic fluxes.
Nielsen J., J. Bacteriol. 185(24), 2003
PMID: 14645261
Metabolic screening of mammalian cell cultures using well-plates.
Balcarcel RR, Clark LM., Biotechnol. Prog. 19(1), 2003
PMID: 12573012
Metabolic flux analysis of hybridoma cells in different culture media using mass balances.
Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J., Biotechnol. Bioeng. 50(3), 1996
PMID: 18626958
Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2.
Niklas J, Noor F, Heinzle E., Toxicol. Appl. Pharmacol. 240(3), 2009
PMID: 19607853
Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
Sidorenko Y, Wahl A, Dauner M, Genzel Y, Reichl U., Biotechnol. Prog. 24(2), 2008
PMID: 18215054
Considerations on the lactate consumption by CHO cells in the presence of galactose.
Altamirano C, Illanes A, Becerra S, Cairo JJ, Godia F., J. Biotechnol. 125(4), 2006
PMID: 16822573
Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part I. Experimental observations.
Hofmann U, Maier K, Niebel A, Vacun G, Reuss M, Mauch K., Biotechnol. Bioeng. 100(2), 2008
PMID: 18095337
Online monitoring of oxygen in spinner flasks.
Deshpande RR, Heinzle E., Biotechnol. Lett. 31(5), 2009
PMID: 19148583
Global reconstruction of the human metabolic network based on genomic and bibliomic data.
Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO., Proc. Natl. Acad. Sci. U.S.A. 104(6), 2007
PMID: 17267599
Amino acid transporters: roles in amino acid sensing and signalling in animal cells.
Hyde R, Taylor PM, Hundal HS., Biochem. J. 373(Pt 1), 2003
PMID: 12879880

Berg JM, Tymoczko JL, Stryer L., 2003
Structure and function of mitochondrial anion transport proteins.
Kaplan RS., J. Membr. Biol. 179(3), 2001
PMID: 11246418
Cell volume measurement as an estimation of mammalian cell biomass.
Frame KK, Hu WS., Biotechnol. Bioeng. 36(2), 1990
PMID: 18595067
Cell cycle model to describe animal cell size variation and lag between cell number and biomass dynamics.
Nielsen LK, Reid S, Greenfield PF., Biotechnol. Bioeng. 56(4), 1997
PMID: 18642240
Analysis of cellular metabolism of hybridoma cells at distinct physiological states.
Gambhir A, Korke R, Lee J, Fu PC, Europa A, Hu WS., J. Biosci. Bioeng. 95(4), 2003
PMID: 16233414

AUTHOR UNKNOWN, 0
Metabolic control analysis of eucaryotic pyruvate dehydrogenase multienzyme complex.
Modak J, Deckwer WD, Zeng AP., Biotechnol. Prog. 18(6), 2002
PMID: 12467446
Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction.
Irani N, Wirth M, van Den Heuvel J, Wagner R., Biotechnol. Bioeng. 66(4), 1999
PMID: 10578094
Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering.
Paredes C, Prats E, Cairo JJ, Azorin F, Cornudella L, Godia F., Cytotechnology 30(1-3), 1999
PMID: 19003358
Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells.
Genzel Y, Ritter JB, Konig S, Alt R, Reichl U., Biotechnol. Prog. 21(1), 2005
PMID: 15903241
Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture.
Omasa T, Furuichi K, Iemura T, Katakura Y, Kishimoto M, Suga K., Bioprocess Biosyst Eng 33(1), 2009
PMID: 19590901
Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production.
Chen K, Liu Q, Xie L, Sharp PA, Wang DI., Biotechnol. Bioeng. 72(1), 2001
PMID: 11084594
The energy spilling reactions of bacteria and other organisms.
Russell JB., J. Mol. Microbiol. Biotechnol. 13(1-3), 2007
PMID: 17693707
Metabolic flux analysis in eukaryotes.
Niklas J, Schneider K, Heinzle E., Curr. Opin. Biotechnol. 21(1), 2010
PMID: 20163950
Metabolic flux analysis in mammalian cell culture.
Quek LE, Dietmair S, Kromer JO, Nielsen LK., Metab. Eng. 12(2), 2009
PMID: 19833223
Intracellular flux analysis in hybridomas using mass balances and in vitro (13)C nmr.
Zupke C, Stephanopoulos G., Biotechnol. Bioeng. 45(4), 1995
PMID: 18623182
Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells.
Bonarius HP, Timmerarends B, de Gooijer CD, Tramper J., Biotechnol. Bioeng. 58(2-3), 1998
PMID: 10191398
Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose.
Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M., Am. J. Physiol. 274(5), 1998
PMID: 9612242

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21188421
PubMed | Europe PMC

Suchen in

Google Scholar