The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification

Schnitzer D, Seidel T, Sander T, Golldack D, Dietz K-J (2011)
Plant and Cell Physiology 52(5): 946-956.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The plant vacuolar H+-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V-1-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peri-pheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.
Stichworte
Reversible Dissociation; Transport; Arabidopsis thaliana; FRET; Vacuole; V-ATPase
Erscheinungsjahr
2011
Zeitschriftentitel
Plant and Cell Physiology
Band
52
Ausgabe
5
Seite(n)
946-956
ISSN
0032-0781
eISSN
1471-9053
Page URI
https://pub.uni-bielefeld.de/record/2289850

Zitieren

Schnitzer D, Seidel T, Sander T, Golldack D, Dietz K-J. The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification. Plant and Cell Physiology. 2011;52(5):946-956.
Schnitzer, D., Seidel, T., Sander, T., Golldack, D., & Dietz, K. - J. (2011). The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification. Plant and Cell Physiology, 52(5), 946-956. https://doi.org/10.1093/pcp/pcr044
Schnitzer, Daniel, Seidel, Thorsten, Sander, Tim, Golldack, Dortje, and Dietz, Karl-Josef. 2011. “The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification”. Plant and Cell Physiology 52 (5): 946-956.
Schnitzer, D., Seidel, T., Sander, T., Golldack, D., and Dietz, K. - J. (2011). The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification. Plant and Cell Physiology 52, 946-956.
Schnitzer, D., et al., 2011. The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification. Plant and Cell Physiology, 52(5), p 946-956.
D. Schnitzer, et al., “The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification”, Plant and Cell Physiology, vol. 52, 2011, pp. 946-956.
Schnitzer, D., Seidel, T., Sander, T., Golldack, D., Dietz, K.-J.: The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification. Plant and Cell Physiology. 52, 946-956 (2011).
Schnitzer, Daniel, Seidel, Thorsten, Sander, Tim, Golldack, Dortje, and Dietz, Karl-Josef. “The Cellular Energization State Affects Peripheral Stalk Stability of Plant Vacuolar H+-ATPase and Impairs Vacuolar Acidification”. Plant and Cell Physiology 52.5 (2011): 946-956.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia
Gao Y, Zhou H, Chen J, Jiang X, Tao S, Wu J, Zhang S., Physiol Plant 153(4), 2015
PMID: IND601259795
Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color.
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM., Cell Rep 6(1), 2014
PMID: 24388746
Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions.
Tabke K, Albertmelcher A, Vitavska O, Huss M, Schmitz HP, Wieczorek H., Biochem J 462(1), 2014
PMID: 24805887
Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago.
Gavrin A, Kaiser BN, Geiger D, Tyerman SD, Wen Z, Bisseling T, Fedorova EE., Plant Cell 26(9), 2014
PMID: 25217511
Kaede for detection of protein oligomerization.
Wolf H, Barisas BG, Dietz KJ, Seidel T., Mol Plant 6(5), 2013
PMID: 23430050
Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740
Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly.
Okamoto-Terry H, Umeki K, Nakanishi-Matsui M, Futai M., J Biol Chem 288(51), 2013
PMID: 24196958

58 References

Daten bereitgestellt von Europe PubMed Central.

Dissociation, cross-linking, and glycosylation of the coated vesicle proton pump.
Adachi I, Puopolo K, Marquez-Sterling N, Arai H, Forgac M., J. Biol. Chem. 265(2), 1990
PMID: 1967252
Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding.
Armbruster A, Hohn C, Hermesdorf A, Schumacher K, Borsch M, Gruber G., FEBS Lett. 579(9), 2005
PMID: 15792803
Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.
Crafts-Brandner SJ, Salvucci ME., Proc. Natl. Acad. Sci. U.S.A. 97(24), 2000
PMID: 11069297
A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly.
Diepholz M, Venzke D, Prinz S, Batisse C, Florchinger B, Rossle M, Svergun DI, Bottcher B, Fethiere J., Structure 16(12), 2008
PMID: 19081055
Three-dimensional map of a plant V-ATPase based on electron microscopy.
Domgall I, Venzke D, Luttge U, Ratajczak R, Bottcher B., J. Biol. Chem. 277(15), 2002
PMID: 11815621
Crystal structure of yeast V-ATPase subunit C reveals its stator function.
Drory O, Frolow F, Nelson N., EMBO Rep. 5(12), 2004
PMID: 15540116
The endomembrane system: a green perspective.
Frigerio L, Hawes C., Traffic 9(10), 2008
PMID: 18826560
The mechanochemistry of V-ATPase proton pumps.
Grabe M, Wang H, Oster G., Biophys. J. 78(6), 2000
PMID: 10827963
Purification and properties of a cytosolic V1-ATPase.
Graf R, Harvey WR, Wieczorek H., J. Biol. Chem. 271(34), 1996
PMID: 8702848
Transcript level regulation of the vacuolar H(+)-ATPase subunit isoforms VHA-a, VHA-E and VHA-G in Arabidopsis thaliana.
Hanitzsch M, Schnitzer D, Seidel T, Golldack D, Dietz KJ., Mol. Membr. Biol. 24(5-6), 2007
PMID: 17710654
A WNK kinase binds and phosphorylates V-ATPase subunit C.
Hong-Hermesdorf A, Brux A, Gruber A, Gruber G, Schumacher K., FEBS Lett. 580(3), 2006
PMID: 16427632
Biosynthesis and regulation of the yeast vacuolar H+-ATPase.
Kane PM., J. Bioenerg. Biomembr. 31(1), 1999
PMID: 10340848
Assembly and regulation of the yeast vacuolar H(+)-ATPase.
Kane PM, Parra KJ., J. Exp. Biol. 203(Pt 1), 2000
PMID: 10600676
Stoichiometry of the peripheral stalk subunits E and G of yeast V1-ATPase determined by mass spectrometry.
Kitagawa N, Mazon H, Heck AJ, Wilkens S., J. Biol. Chem. 283(6), 2007
PMID: 18055462
Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin.
Konishi H, Maeshima M, Komatsu S., J. Proteome Res. 4(5), 2005
PMID: 16212432
Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling.
Konishi H, Yamane H, Maeshima M, Komatsu S., Plant Mol. Biol. 56(6), 2004
PMID: 15821984
Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization.
Lafourcade C, Sobo K, Kieffer-Jaquinod S, Garin J, van der Goot FG., PLoS ONE 3(7), 2008
PMID: 18648502
The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase.
Lu M, Sautin YY, Holliday LS, Gluck SL., J. Biol. Chem. 279(10), 2003
PMID: 14672945
The H+-pumping V-ATPase of higher plants: a versatile ‘eco-enzyme’ in response to environmental stress
Lüttge, Cell. Biol. Mol. Lett. 6(), 2001
Molecular chaperones: multiple functions, pathologies, and potential applications.
Macario AJ, Conway de Macario E., Front. Biosci. 12(), 2007
PMID: 17127265
Cold inactivation of vacuolar proton-ATPases.
Moriyama Y, Nelson N., J. Biol. Chem. 264(6), 1989
PMID: 2521638
The E and G subunits of the yeast V-ATPase interact tightly and are both present at more than one copy per V1 complex.
Ohira M, Smardon AM, Charsky CM, Liu J, Tarsio M, Kane PM., J. Biol. Chem. 281(32), 2006
PMID: 16774922
Assay of vacuolar pH in yeast and identification of acidification-defective mutants.
Preston RA, Murphy RF, Jones EW., Proc. Natl. Acad. Sci. U.S.A. 86(18), 1989
PMID: 2674942
Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae.
Sagermann M, Stevens TH, Matthews BW., Proc. Natl. Acad. Sci. U.S.A. 98(13), 2001
PMID: 11416198
The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development.
Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J., Genes Dev. 13(24), 1999
PMID: 10617574
Fluorescent proteins for single-molecule fluorescence applications.
Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz KJ, Heilemann M, Sauer M., J Biophotonics 1(1), 2008
PMID: 19343637
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett. 579(20), 2005
PMID: 16061227
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
Functional characterisation of the peroxiredoxin gene family members of Synechococcus elongatus PCC 7942.
Stork T, Laxa M, Dietz MS, Dietz KJ., Arch. Microbiol. 191(2), 2008
PMID: 18974976
Arabidopsis vacuolar H-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis.
Strompen G, Dettmer J, Stierhof YD, Schumacher K, Jurgens G, Mayer U., Plant J. 41(1), 2005
PMID: 15610355
Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits.
Sumner JP, Dow JA, Earley FG, Klein U, Jager D, Wieczorek H., J. Biol. Chem. 270(10), 1995
PMID: 7890686
A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase.
Sze H, Schumacher K, Muller ML, Padmanaban S, Taiz L., Trends Plant Sci. 7(4), 2002
PMID: 11950611
Activation of lysosomal function during dendritic cell maturation.
Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I., Science 299(5611), 2003
PMID: 12610307
Dissociation and Reassembly of the Vacuolar H-ATPase Complex from Oat Roots.
Ward JM, Reinders A, Hsu HT, Sze H., Plant Physiol. 99(1), 1992
PMID: 16668845
The diurnal metabolism of leaf starch.
Zeeman SC, Smith SM, Smith AM., Biochem. J. 401(1), 2007
PMID: 17150041
Structure of the yeast vacuolar ATPase.
Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJ, Kane PM, Wilkens S., J. Biol. Chem. 283(51), 2008
PMID: 18955482
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21474463
PubMed | Europe PMC

Suchen in

Google Scholar