Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle

Dirks J-H, Dürr V (2011)
J.Mech.Behav.Biomed.Mat. 4(8): 2031-2042.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dirks, Jan-Henning; Dürr, VolkerUniBi
Abstract / Bemerkung
The antenna of the Indian stick insect Carausius morosus is a highly specialized near-range sensory probe used to actively sample tactile cues about location, distance or shape of external objects in real time. The length of the antenna's flagellum is 100 times the diameter at the base, making it a very delicate and slender structure. Like the rest of the insect body, it is covered by a protective exoskeletal cuticle, making it stiff enough to allow controlled, active, exploratory movements and hard enough to resist damage and wear. At the same time, it is highly flexible in response to contact forces, and returns rapidly to its straight posture without oscillations upon release of contact force. Which mechanical adaptations allow stick insects to unfold the remarkable combination of maintaining a sufficiently invariant shape between contacts and being sufficiently compliantduring contact? What role does the cuticle play? Our results show that, based on morphological differences, the flagellum can be divided into three zones, consisting of a tapered cone of stiff exocuticle lined by an inner wedge of compliant endocuticle. This inner wedge is thick at the antenna's base and thin at its distal half. The decay time constant after deflection, a measure that indicates strength of damping, is much longer at the base (tau > 25 ms) than in the distal half (tau < 18 ms) of the flagellum. Upon experimental desiccation, reducing mass and compliance of the endocuticle, the flagellum becomes under-damped. Analyzing the frequency components indicates that the flagellum can be abstracted with the model of a double pendulum with springs and dampers in both joints. We conclude that in the stick-insect antenna the cuticle properties described are structural correlates of damping, allowing for a straight posture in the instant of a new contact event, combined with a maximum of flexibility.
Stichworte
insect antenna; tactile sensing; damping; biomechanics; cuticle
Erscheinungsjahr
2011
Zeitschriftentitel
J.Mech.Behav.Biomed.Mat.
Band
4
Ausgabe
8
Seite(n)
2031-2042
ISSN
1751-6161
Page URI
https://pub.uni-bielefeld.de/record/2284761

Zitieren

Dirks J-H, Dürr V. Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle. J.Mech.Behav.Biomed.Mat. 2011;4(8):2031-2042.
Dirks, J. - H., & Dürr, V. (2011). Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle. J.Mech.Behav.Biomed.Mat., 4(8), 2031-2042. https://doi.org/10.1016/j.jmbbm.2011.07.002
Dirks, Jan-Henning, and Dürr, Volker. 2011. “Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle”. J.Mech.Behav.Biomed.Mat. 4 (8): 2031-2042.
Dirks, J. - H., and Dürr, V. (2011). Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle. J.Mech.Behav.Biomed.Mat. 4, 2031-2042.
Dirks, J.-H., & Dürr, V., 2011. Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle. J.Mech.Behav.Biomed.Mat., 4(8), p 2031-2042.
J.-H. Dirks and V. Dürr, “Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle”, J.Mech.Behav.Biomed.Mat., vol. 4, 2011, pp. 2031-2042.
Dirks, J.-H., Dürr, V.: Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle. J.Mech.Behav.Biomed.Mat. 4, 2031-2042 (2011).
Dirks, Jan-Henning, and Dürr, Volker. “Biomechanics of the stick insect antenna: Damping properties and structural correlates of the cuticle”. J.Mech.Behav.Biomed.Mat. 4.8 (2011): 2031-2042.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration.
Rajabi H, Shafiei A, Darvizeh A, Gorb SN, Dürr V, Dirks JH., J R Soc Interface 15(144), 2018
PMID: 30045891
Biomechanics of the peafowl's crest reveals frequencies tuned to social displays.
Kane SA, Van Beveren D, Dakin R., PLoS One 13(11), 2018
PMID: 30485316
Stiffness distribution in insect cuticle: a continuous or a discontinuous profile?
Rajabi H, Jafarpour M, Darvizeh A, Dirks JH, Gorb SN., J R Soc Interface 14(132), 2017
PMID: 28724628
Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins.
Rajabi H, Shafiei A, Darvizeh A, Dirks JH, Appel E, Gorb SN., R Soc Open Sci 3(2), 2016
PMID: 26998340
Cricket antennae shorten when bending (Acheta domesticus L.).
Loudon C, Bustamante J, Kellogg DW., Front Physiol 5(), 2014
PMID: 25018734
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Dürr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation.
Patanè L, Hellbach S, Krause AF, Arena P, Dürr V., Front Neurorobot 6(), 2012
PMID: 23055967
Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis.
Taylor D, Dirks JH., J R Soc Interface 9(77), 2012
PMID: 22977103

52 References

Daten bereitgestellt von Europe PubMed Central.

Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insect
Altner, Carausius morosus. Cell & Tissue Research 191(), 1978
Large deflection analysis of a biomimetic lobster robot antenna due to contact and flow
Barnes, Journal of Applied Mechanics-Transactions of the ASME 68(6), 2001
A tactile sensor for biomedical applications based on IPMCs
Bonorno, IEEE Sensors Journal 8(7–8), 2008
Oscillations of plants’ stems and their damping: theory and experimentation
Bruchert, Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 358(1437), 2003
High-frequency steering maneuvers mediated by tactile cues: antennal wall-following by the cockroach
Camhi, Journal of Experimental Biology 202(5), 1999
L’organe antennaire des Phasmes
Cappe, Bulletin biologique de la France et de la Belgique 70(), 1936
Task-level control of rapid wall following in the american cockroach
Cowan, Journal of Experimental Biology 209 (), 2006
The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking
Dürr, Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology 187(2), 2001
Bionic tactile sensor for near-range search, localisation and material classification
Dürr, 2007
Neuroethological concepts and their transfer to walking machines
Dürr, International Journal of Robotics Research 22(3–4), 2003
Ant antennae: are they sites for magnetoreception?
Ferreira, Journal of the Royal Society Interface 7(), 2010
Contact type dependency of texture classification in a whiskered mobile robot
Fox, Autonomous Robots 26(), 2009
Active auditory mechanics in mosquitoes
Göpfert, Proceedings of the Royal Society of London B 268(), 2001

Hansson, 1999
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Aerodynamic and mechanical-properties of the antennae as air-current sense-organs in Locusta migratoria. II. Dynamic characteristics
Heinzel, Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology 161(5), 1987

AUTHOR UNKNOWN, 0
Material properties of arthropod cuticles — arthrodial membranes
Hepburn, Journal of Comparative Physiology 109(2), 1976
On the antennal musculature in insects and other arthropods
Imms, Quarterly Journal of Microscopical Science 81(), 1939
Biology and physics of locust flight v: Strength and elasticity of locust cuticle
Jensen, Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 245(721), 1962
Biomimetic whiskers for shape recognition
Kim, Robotics and Autonomous Systems 55(3), 2007
Tactile efficiency of insect antennae with two hinge joints.
Krause AF, Durr V., Biol Cybern 91(3), 2004
PMID: 15378371
Templates and anchors for antenna-based wall following in cockroaches and robots
Lee, IEEE Transactions on Robotics and Automation Transactions on Robotics and Automation 24(1), 2008
Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument.
Lin HT, Dorfmann AL, Trimmer BA., J. Theor. Biol. 256(3), 2008
PMID: 19014955
Flexural stiffness of insect antennae.
Loudon C., American entomologist. 51(1), 2005
PMID: IND43729273
Rigid biological composite materials: structureal examples for biomimetic design
Mayer, Experimental Mechanics 42(), 2002
Micromechanical properties of consecutive layers in specialized insect cuticle: the gula of Pachnoda marginata (Coleoptera, Scarabaeidae) and the infrared sensilla of Melanophila acuminata (Coleoptera, Buprestidae)
Mueller, Journal of Experimental Biology 211(16), 2008
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity.
Mujagic S, Krause AF, Durr V., Naturwissenschaften 94(4), 2006
PMID: 17180615
Active tactile sensing for localization of objects by the cockroach antenna
Okada, Journal of Comparative Physiology A (), 2006
Gross and fine-structure of the antennal circulatory organ in cockroaches (blattodea, insecta)
Pass, Journal of Morphology 185(2), 1985
Accessory pulsatile organs: evolutionary innovations in insects.
Pass G., Annu. Rev. Entomol. 45(), 2000
PMID: 10761587
Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system
Pearson, Adaptive Behaviour 15(3), 2007
Obstacle perception by insect antennae during terrestrial locomotion.
Pelletier Y, McLeod CD., Physiol. Entomol. 19(4), 1994
PMID: IND20445923

Romeis, 1989
Spatial equilibrium in the arthropods
Sandeman, 1976
Physical-properties, sensory receptors and tactile reflexes of the antenna of the Australian fresh-water crayfish Cherax destructor
Sandeman, Journal of Experimental Biology 141(), 1989

AUTHOR UNKNOWN, 0
Biomechanics: robotic whiskers used to sense features.
Solomon JH, Hartmann MJ., Nature 443(7111), 2006
PMID: 17024083
Oscillation frequencies of tapered plant stems.
Spatz HC, Speck O., Am. J. Bot. 89(1), 2002
PMID: IND23272290
Damped oscillations of the giant reed Arundo donax (Poaceae)
Speck O, Spatz HC., Am. J. Bot. 91(6), 2004
PMID: IND43644974
Antennal movements and mechanoreception: neurobiology of active tactile sensors
Staudacher, Advances in Insect Physiology 32(), 2005

AUTHOR UNKNOWN, 0
Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity.
Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ., J. Neurophysiol. 97(4), 2007
PMID: 17267756
Tanning of insect cuticle - critical-review and a revised mechanism
Vincent, Journal of Insect Physiology 25(8), 1979
Design and mechanical properties of insect cuticle.
Vincent JF, Wegst UG., Arthropod Struct Dev 33(3), 2004
PMID: 18089034

Weber, 1968

AUTHOR UNKNOWN, 0
The advantages of a tapered whisker.
Williams CM, Kramer EM., PLoS ONE 5(1), 2010
PMID: 20098714
Tactile localization — the function of active antennal movements in the crayfish Cherax destructor
Zeil, Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology 157(5), 1985
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22098903
PubMed | Europe PMC

Suchen in

Google Scholar