The influence of dominant versus non-dominant hand on event and emergent motor timing

Studenka BE, Zelaznik HN (2008)
Human Movement Science 27(1): 29-52.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Studenka, B.E.; Zelaznik, H.N.
Erscheinungsjahr
2008
Zeitschriftentitel
Human Movement Science
Band
27
Ausgabe
1
Seite(n)
29-52
ISSN
0167-9457
Page URI
https://pub.uni-bielefeld.de/record/2281927

Zitieren

Studenka BE, Zelaznik HN. The influence of dominant versus non-dominant hand on event and emergent motor timing. Human Movement Science. 2008;27(1):29-52.
Studenka, B. E., & Zelaznik, H. N. (2008). The influence of dominant versus non-dominant hand on event and emergent motor timing. Human Movement Science, 27(1), 29-52. https://doi.org/10.1016/j.humov.2007.08.004
Studenka, B.E., and Zelaznik, H.N. 2008. “The influence of dominant versus non-dominant hand on event and emergent motor timing”. Human Movement Science 27 (1): 29-52.
Studenka, B. E., and Zelaznik, H. N. (2008). The influence of dominant versus non-dominant hand on event and emergent motor timing. Human Movement Science 27, 29-52.
Studenka, B.E., & Zelaznik, H.N., 2008. The influence of dominant versus non-dominant hand on event and emergent motor timing. Human Movement Science, 27(1), p 29-52.
B.E. Studenka and H.N. Zelaznik, “The influence of dominant versus non-dominant hand on event and emergent motor timing”, Human Movement Science, vol. 27, 2008, pp. 29-52.
Studenka, B.E., Zelaznik, H.N.: The influence of dominant versus non-dominant hand on event and emergent motor timing. Human Movement Science. 27, 29-52 (2008).
Studenka, B.E., and Zelaznik, H.N. “The influence of dominant versus non-dominant hand on event and emergent motor timing”. Human Movement Science 27.1 (2008): 29-52.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of multiple internal timekeepers and sources of feedback on interval timing.
Studenka BE, Cummins DL, Pope MA., Q J Exp Psychol (Hove) 71(9), 2018
PMID: 28854855
Using visual stimuli to enhance gait control.
Rhea CK, Kuznetsov NA., J Vestib Res 27(1), 2017
PMID: 28387688
Manual asymmetry for temporal and spatial parameters in sensorimotor synchronization.
Chieffi S, Villano I, Iavarone A, Messina A, Monda V, Viggiano A, Messina G, Monda M., Exp Brain Res 235(5), 2017
PMID: 28251335
Music, clicks, and their imaginations favor differently the event-based timing component for rhythmic movements.
Bravi R, Quarta E, Del Tongo C, Carbonaro N, Tognetti A, Minciacchi D., Exp Brain Res 233(6), 2015
PMID: 25837726
Individual differences in timing of discrete and continuous movements: a dimensional approach.
Lorås H, Stensdotter AK, Öhberg F, Sigmundsson H., Psychol Res 78(2), 2014
PMID: 23712334
Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.
Rhea CK, Kiefer AW, D'Andrea SE, Warren WH, Aaron RK., Hum Mov Sci 36(), 2014
PMID: 24911782
Fractal gait patterns are retained after entrainment to a fractal stimulus.
Rhea CK, Kiefer AW, Wittstein MW, Leonard KB, MacPherson RP, Wright WG, Haran FJ., PLoS One 9(9), 2014
PMID: 25221981
A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements.
Bravi R, Quarta E, Cohen EJ, Gottard A, Minciacchi D., Front Syst Neurosci 8(), 2014
PMID: 25309355
Timing skills and expertise: discrete and continuous timed movements among musicians and athletes.
Braun Janzen T, Thompson WF, Ammirante P, Ranvaud R., Front Psychol 5(), 2014
PMID: 25566154
The role of musical training in emergent and event-based timing.
Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB., Front Hum Neurosci 7(), 2013
PMID: 23717275
Individual differences in motor timing and its relation to cognitive and fine motor skills.
Lorås H, Stensdotter AK, Öhberg F, Sigmundsson H., PLoS One 8(7), 2013
PMID: 23874952
Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals.
Lorås H, Sigmundsson H, Talcott JB, Öhberg F, Stensdotter AK., Exp Brain Res 220(3-4), 2012
PMID: 22710620
Synchronization in repetitive smooth movement requires perceptible events.
Studenka BE, Zelaznik HN., Acta Psychol (Amst) 136(3), 2011
PMID: 21300324
Spontaneous eye blinks are entrained by finger tapping.
Cong DK, Sharikadze M, Staude G, Deubel H, Wolf W., Hum Mov Sci 29(1), 2010
PMID: 19913931

29 References

Daten bereitgestellt von Europe PubMed Central.

Timing precision in circle drawing does not depend on spatial precision of the timing target.
Biberstine J, Zelaznik HN, Kennedy L, Whetter E., J Mot Behav 37(6), 2005
PMID: 16280315

Fitts, 1967
Timing in eyeblink classical conditioning and timed-interval tapping
Green, Psychological Science 10(), 1999
Slicing the variability pie: Component analysis of coordination and motor dysfunction
Ivry, 1993
Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism
Ivry, Journal of Experimental Psychology: Human Perception and Performance 21(), 1995
Dissociation of the lateral and medial cerebellum in movement timing and movement execution.
Ivry RB, Keele SW, Diener HC., Exp Brain Res 73(1), 1988
PMID: 3208855
Temporal control and coordination: the multiple timer model.
Ivry RB, Richardson TC., Brain Cogn 48(1), 2002
PMID: 11812037
The cerebellum and event timing
Ivry, 2002
Explorations of individual differences relevant to high level skill.
Keele SW, Hawkins HL., J Mot Behav 14(1), 1982
PMID: 15151886
Modular analysis of timing in motor skill
Keele, 1987
Do perception and motor production share common timing mechanisms: a correctional analysis.
Keele SW, Pokorny RA, Corcos DM, Ivry R., Acta Psychol (Amst) 60(2-3), 1985
PMID: 4091033
Overview: An image of human neural timing
Lewis, 2002
How we control the contraction of our muscles
Merton, Scientific American 226(), 1972
Constraints on the development of coordination
Newell, 1985
The assessment and analysis of handedness: the Edinburgh inventory.
Oldfield RC., Neuropsychologia 9(1), 1971
PMID: 5146491

AUTHOR UNKNOWN, 0
Correlations for timing consistency among tapping and drawing tasks: Evidence against a single timing process for motor control
Robertson, Journal of Experimental Psychology: Human Perception and Performance 25(), 1999
Rhythmic arm movement is not discrete
Schaal, Nature Neuroscience 7(), 2004
A preliminary attempt to determine the duration of a motor program
Shapiro, 1977
Weber (slope) analyses of timing variability in tapping and drawing tasks.
Spencer RM, Zelaznik HN., J Mot Behav 35(4), 2003
PMID: 14607774
Disrupted timing of discontinuous but not continuous movements by cerebellar lesions.
Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB., Science 300(5624), 2003
PMID: 12775842
Modeling variability and dependence in timing
Vorberg, 1996
Timing of movement phases of a repeated response.
Wing AM., J Mot Behav 12(2), 1980
PMID: 15215056
Response delays and the timing of discrete motor responses
Wing, Perception & Psychophysics 14(), 1973
Generalized motor programs: Reexamining claims of effector independence
Wright, 1990
Dissociation of explicit and implicit timing in repetitive tapping and drawing movements
Zelaznik, Journal of Experimental Psychology: Human Perception & Performance 28(), 2002
Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing.
Zelaznik HN, Spencer RM, Ivry RB, Baria A, Bloom M, Dolansky L, Justice S, Patterson K, Whetter E., J Mot Behav 37(5), 2005
PMID: 16120566
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18191491
PubMed | Europe PMC

Suchen in

Google Scholar