A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data
Tscherepanow M, Kortkamp M, Kammer M (2011)
Neural Networks 24(8): 906-916.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
tscherepanow.marko2011ahierarchical-nn-r1.pdf
Einrichtung
Abstract / Bemerkung
In this article, a novel unsupervised neural network combining elements from Adaptive Resonance Theory and topology-learning neural networks is presented. It enables stable on-line clustering of stationary and non-stationary input data by learning their inherent topology. Here, two network components representing two different levels of detail are trained simultaneously. By virtue of several filtering mechanisms, the sensitivity to noise is diminished, which renders the proposed network suitable for the application to real-world problems. Furthermore, we demonstrate that this network constitutes an excellent basis to learn and recall associations between real-world associative keys. Its incremental nature ensures that the capacity of the corresponding associative memory fits the amount of knowledge to be learnt. Moreover, the formed clusters efficiently represent the relations between the keys, even if noisy data is used for training. In addition, we present an iterative recall mechanism to retrieve stored information based on one of the associative keys used for training. As different levels of detail are learnt, the recall can be performed with different degrees of accuracy.
Stichworte
associative memory;
topology learning;
hierarchical representations;
Adaptive Resonance Theory;
incremental learning
Erscheinungsjahr
2011
Zeitschriftentitel
Neural Networks
Band
24
Ausgabe
8
Seite(n)
906-916
ISSN
0893-6080
Page URI
https://pub.uni-bielefeld.de/record/2279367
Zitieren
Tscherepanow M, Kortkamp M, Kammer M. A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data. Neural Networks. 2011;24(8):906-916.
Tscherepanow, M., Kortkamp, M., & Kammer, M. (2011). A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data. Neural Networks, 24(8), 906-916. https://doi.org/10.1016/j.neunet.2011.05.009
Tscherepanow, Marko, Kortkamp, Marco, and Kammer, Marc. 2011. “A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data”. Neural Networks 24 (8): 906-916.
Tscherepanow, M., Kortkamp, M., and Kammer, M. (2011). A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data. Neural Networks 24, 906-916.
Tscherepanow, M., Kortkamp, M., & Kammer, M., 2011. A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data. Neural Networks, 24(8), p 906-916.
M. Tscherepanow, M. Kortkamp, and M. Kammer, “A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data”, Neural Networks, vol. 24, 2011, pp. 906-916.
Tscherepanow, M., Kortkamp, M., Kammer, M.: A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data. Neural Networks. 24, 906-916 (2011).
Tscherepanow, Marko, Kortkamp, Marco, and Kammer, Marc. “A Hierarchical ART Network for the Stable Incremental Learning of Topological Structures and Associations from Noisy Data”. Neural Networks 24.8 (2011): 906-916.
Volltext(e)
Name
tscherepanow.marko2011ahierarchical-nn-r1.pdf
Access Level
UniBi Only
Zuletzt Hochgeladen
2019-09-06T08:57:34Z
MD5 Prüfsumme
ff985d7176eb0f4ba8a61dbcf88d1fee
Link(s) zu Volltext(en)
Access Level
Closed Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 21704496
PubMed | Europe PMC
Suchen in