Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus

Zill SN, Büschges A, Schmitz J (2011)
Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197(8): 851-867.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zill, Sasha N.; Büschges, Ansgar; Schmitz, JosefUniBi
Erscheinungsjahr
2011
Zeitschriftentitel
Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
Band
197
Ausgabe
8
Seite(n)
851-867
ISSN
0340-7594
eISSN
1432-1351
Page URI
https://pub.uni-bielefeld.de/record/2143597

Zitieren

Zill SN, Büschges A, Schmitz J. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 2011;197(8):851-867.
Zill, S. N., Büschges, A., & Schmitz, J. (2011). Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(8), 851-867. https://doi.org/10.1007/s00359-011-0647-4
Zill, Sasha N., Büschges, Ansgar, and Schmitz, Josef. 2011. “Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus”. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197 (8): 851-867.
Zill, S. N., Büschges, A., and Schmitz, J. (2011). Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197, 851-867.
Zill, S.N., Büschges, A., & Schmitz, J., 2011. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(8), p 851-867.
S.N. Zill, A. Büschges, and J. Schmitz, “Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus”, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 197, 2011, pp. 851-867.
Zill, S.N., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 197, 851-867 (2011).
Zill, Sasha N., Büschges, Ansgar, and Schmitz, Josef. “Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus”. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 197.8 (2011): 851-867.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Modeling search movements of an insect's front leg.
Tóth TI, Berg E, Daun S., Physiol Rep 5(22), 2017
PMID: 29146863
Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila.
Berendes V, Zill SN, Büschges A, Bockemühl T., J Exp Biol 219(pt 23), 2016
PMID: 27688052
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
A neuromechanical model for the neuronal basis of curve walking in the stick insect.
Knops S, Tóth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S., J Neurophysiol 109(3), 2013
PMID: 23136343
A laser-supported lowerable surface setup to study the role of ground contact during stepping.
Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M., J Neurosci Methods 215(2), 2013
PMID: 23562598
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
A neuromechanical model explaining forward and backward stepping in the stick insect.
Tóth TI, Knops S, Daun-Gruhn S., J Neurophysiol 107(12), 2012
PMID: 22402652
Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
Borgmann A, Toth TI, Gruhn M, Daun-Gruhn S, Büschges A., Biol Cybern 105(5-6), 2011
PMID: 22290138

53 References

Daten bereitgestellt von Europe PubMed Central.

Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989

FG, J Comp Physiol 125(), 1978

U, Biol Cyb 55(), 1987

R, J Comp Physiol A 157(), 1985

J, J Comp Physiol 142(), 1981

M, J Comp Physiol A 163(), 1988
Form and role of deformation in excitation of an insect mechanoreceptor.
Chapman KM, Duckrow RB, Moran DT., Nature 244(5416), 1973
PMID: 4582504

KM, J Comp Physiol A 131(), 1979

H, J Exp Biol 181(), 1993
Neural bases of postural control.
Deliagina TG, Orlovsky GN, Zelenin PV, Beloozerova IN., Physiology (Bethesda) 21(), 2006
PMID: 16714480

MH, J Exp Biol 169(), 1992
Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking.
Donelan JM, Pearson KG., Can. J. Physiol. Pharmacol. 82(8-9), 2004
PMID: 15523516

J, Phys Rev 80(), 2000

W, Zoomorphol 106(), 1987

U, Zoomorphol 106(), 1987

T, Physiol Entomol 7(), 1982
The decerebrate cat generates the essential features of the force constraint strategy.
Honeycutt CF, Nichols TR., J. Neurophysiol. 103(6), 2010
PMID: 20089811
Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches.
Keller BR, Duke ER, Amer AS, Zill SN., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(8), 2007
PMID: 17541783
Sensory organs of the thoracic legs of the moth Manduca sexta.
Kent KS, Griffin LM., Cell Tissue Res. 259(2), 1990
PMID: 2337920

AUTHOR UNKNOWN, 0

A, Zoomorphol 110(), 1991
Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches.
Noah JA, Quimby L, Frazier SF, Zill SN., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14727134

A, Acta Biol Cracoviensia Ser Zool 36(), 1994

JWS, J Exp Biol 15(), 1938

JWS, J Exp Biol 15(), 1938
Active signaling of leg loading and unloading in the cockroach.
Ridgel AL, Frazier SF, Dicaprio RA, Zill SN., J. Neurophysiol. 81(3), 1999
PMID: 10085370
Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
Ridgel AL, Frazier SF, DiCaprio RA, Zill SN., J. Comp. Physiol. A 186(4), 2000
PMID: 10798724

J, Biol Cybern 55(), 1986

J, J Exp Biol 183(), 1993

H, Z Vergl Physiologie 71(), 1971

RE, 1935

SM, J Comp Physiol 96(), 1975
Distributed relaxation processes in sensory adaptation.
Thorson J, Biederman-Thorson M., Science 183(4121), 1974
PMID: 4587440
Mechanoreceptive afferents in the human sural nerve.
Trulsson M., Exp Brain Res 137(1), 2001
PMID: 11310164

SN, J Exp Biol 91(), 1981

SN, J Exp Biol 94(), 1981

AUTHOR UNKNOWN, 0
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21544617
PubMed | Europe PMC

Suchen in

Google Scholar