Active tactile exploration for adaptive locomotion in the stick insect

Schütz C, Dürr V (2011)
Phil.Trans.R.Soc.Lond. B 366(1581): 2996-3005.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Insects carry a pair of actively moveable feelers that supply the animal with a range of multimodal information. The antennae of the stick insect Carausius morosus are straight and of nearly the same length as the legs, making them ideal probes for near-range exploration. Indeed, stick insects, like many other insects, use antennal contact information for the adaptive control of locomotion, for example in climbing. Moreover, the active exploratory movement pattern of the antennae is context-dependent. The first objective of the present study is to reveal the significance of antennal contact information for the efficient initiation of climbing. This is done by means of kinematic analysis of freely walking animals as they undergo a tactually elicited transition from walking to climbing. The main findings are that fast, tactually elicited re-targeting movements may occur during an ongoing swing movement, and that the height of the last antennal contact prior to leg contact largely predicts the height of the first leg contact. The second objective is to understand the context-dependent adaptation of the antennal movement pattern in response to tactile contact. We show that the cycle frequency of both antennal joints increases after obstacle contact. Furthermore, inter-joint coupling switches distinctly upon tactile contact, revealing a simple mechanism for context-dependent adaptation.
Erscheinungsjahr
Zeitschriftentitel
Phil.Trans.R.Soc.Lond. B
Band
366
Ausgabe
1581
Seite(n)
2996-3005
ISSN
eISSN
PUB-ID

Zitieren

Schütz C, Dürr V. Active tactile exploration for adaptive locomotion in the stick insect. Phil.Trans.R.Soc.Lond. B. 2011;366(1581):2996-3005.
Schütz, C., & Dürr, V. (2011). Active tactile exploration for adaptive locomotion in the stick insect. Phil.Trans.R.Soc.Lond. B, 366(1581), 2996-3005. doi:10.1098/rstb.2011.0126
Schütz, C., and Dürr, V. (2011). Active tactile exploration for adaptive locomotion in the stick insect. Phil.Trans.R.Soc.Lond. B 366, 2996-3005.
Schütz, C., & Dürr, V., 2011. Active tactile exploration for adaptive locomotion in the stick insect. Phil.Trans.R.Soc.Lond. B, 366(1581), p 2996-3005.
C. Schütz and V. Dürr, “Active tactile exploration for adaptive locomotion in the stick insect”, Phil.Trans.R.Soc.Lond. B, vol. 366, 2011, pp. 2996-3005.
Schütz, C., Dürr, V.: Active tactile exploration for adaptive locomotion in the stick insect. Phil.Trans.R.Soc.Lond. B. 366, 2996-3005 (2011).
Schütz, Christoph, and Dürr, Volker. “Active tactile exploration for adaptive locomotion in the stick insect”. Phil.Trans.R.Soc.Lond. B 366.1581 (2011): 2996-3005.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration.
Rajabi H, Shafiei A, Darvizeh A, Gorb SN, Dürr V, Dirks JH., J R Soc Interface 15(144), 2018
PMID: 30045891
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
Mantziaris C, Bockemühl T, Holmes P, Borgmann A, Daun S, Büschges A., J Neurophysiol 118(4), 2017
PMID: 28724783
Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
Grinke E, Tetzlaff C, Wörgötter F, Manoonpong P., Front Neurorobot 9(), 2015
PMID: 26528176
Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
Goldschmidt D, Wörgötter F, Manoonpong P., Front Neurorobot 8(), 2014
PMID: 24523694
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus.
Okada J, Akamine S., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(7), 2012
PMID: 22534774
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Dürr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
Deciding which way to go: how do insects alter movements to negotiate barriers?
Ritzmann RE, Harley CM, Daltorio KA, Tietz BR, Pollack AJ, Bender JA, Guo P, Horomanski AL, Kathman ND, Nieuwoudt C, Brown AE, Quinn RD., Front Neurosci 6(), 2012
PMID: 22783160
An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation.
Patanè L, Hellbach S, Krause AF, Arena P, Dürr V., Front Neurorobot 6(), 2012
PMID: 23055967
Active touch sensing.
Prescott TJ, Diamond ME, Wing AM., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969680
Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution.
Comer C, Baba Y., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969682

45 References

Daten bereitgestellt von Europe PubMed Central.

Antennal movements and mechanoreception: neurobiology of active tactile sensors
Staudacher E., Gebhardt M., Dürr V.., 2005
A preliminary note on a new optomotor response in crickets: antennal tracking of moving targets
Honegger H.-W.., 1981
Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets
Horseman B., Gebhardt M., Honegger H.-W.., 1997
Spatio-temporal patterns of antennal movements in the searching cockroach.
Okada J, Toh Y., J. Exp. Biol. 207(Pt 21), 2004
PMID: 15371477
Active tactile sensing for localization of objects by the cockroach antenna.
Okada J, Toh Y., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(7), 2006
PMID: 16450116
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Neuroethological concepts and their transfer to walking machines
Dürr V., Krause A., Schmitz J., Cruse H.., 2003
Tactile efficiency of insect antennae with two hinge joints.
Krause AF, Durr V., Biol Cybern 91(3), 2004
PMID: 15378371
Beinkoordination und Lauf über Hindernisse von Carabus violaceus (Coleoptera)
Schneider P., Reitberger K.., 1988
Descending control of turning behavior in the cockroach, Blaberus discoidalis.
Ridgel AL, Alexander BE, Ritzmann RE., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(4), 2006
PMID: 17123086
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478
Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) morosus
Marquardt F.., 1939
Adaptive motor behavior in insects.
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559

Bässler U.., 1983
Pattern and control of walking in insects
Graham D.., 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Homoetic regeneration of the antennae in a phasmid or walking-stick
Schmidt-Jensen H.., 1914
Regeneration de pattes á la place d'antennes sectionnées chez un Phasme
Cuénot L.., 1921
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity.
Mujagic S, Krause AF, Durr V., Naturwissenschaften 94(4), 2006
PMID: 17180615
Behavior and adaptability of a six-legged walking system with highly distributed control
Kindermann T.., 2002
The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection
Dürr V., Krause A.., 2001
A posture optimization algorithm for model-based motion capture of movement sequences.
Zakotnik J, Matheson T, Durr V., J. Neurosci. Methods 135(1-2), 2004
PMID: 15020088
Motion analysis using stochastic optimisation and posture disambiguation
Zakotnik J., Dürr V.., 2005
Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen
Wendler G.., 1964
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
Task-level control of rapid wall following in the American cockroach.
Cowan NJ, Lee J, Full RJ., J. Exp. Biol. 209(Pt 9), 2006
PMID: 16621943
Obstacle perception by insect antennae during terrestrial locomotion.
Pelletier Y, McLeod CD., Physiol. Entomol. 19(4), 1994
PMID: IND20445923
Stick insect locomotion on a walking wheel: interleg coordination of leg position
Dean J., Wendler G.., 1983
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Etude des organs sensoriels externes de l'antenne de Phasme Carausius morosus B. (Cheleutoptera)
Urvoy J., Fudalewicz-Niemczyk W., Petryszak A., Rosciszewska M.., 1984
The neurobiology of Etruscan shrew active touch.
Brecht M, Naumann R, Anjum F, Wolfe J, Munz M, Mende C, Roth-Alpermann C., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969684
Active vibrissal sensing in rodents and marsupials.
Mitchinson B, Grant RA, Arkley K, Rankov V, Perkon I, Prescott TJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969685
Radial distance determination in the rat vibrissal system and the effects of Weber's law.
Solomon JH, Hartmann MJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969686
Whisking and whisker kinematics during a texture classification task.
Zuo Y, Perkon I, Diamond ME., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969687

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21969681
PubMed | Europe PMC

Suchen in

Google Scholar