Looking inside self-organizing map ensembles with resampling and negative correlation learning
Scherbart A, Nattkemper TW (2011)
Neural Networks 24(1): 130-141.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Scherbart, Alexandra;
Nattkemper, Tim WilhelmUniBi
Einrichtung
Abstract / Bemerkung
In this work, we focus on the problem of training ensembles or, more generally, a set of self-organizing maps (SOMs). In the light of new theory behind ensemble learning, in particular negative correlation learning (NCL), the question arises if SOM ensemble learning can benefit from non-independent learning when the individual learning stages are interlinked by a term penalizing correlation in errors. We can show that SOMs are well suited as weak ensemble components with a small number of neurons. Using our approach, we obtain efficiently trained SOM ensembles outperforming other reference learners. Due to the transparency of SOMs, we can give insights into the interrelation between diversity and sublocal accuracy inside SOMs. We are able to shed light on the diversity arising over a combination of several factors: explicit versus implicit as well as inter-diversities versus intra-diversities. NCL fully exploits the potential of SOM ensemble learning when the single neural networks co-operate at the highest level and stability is satisfied. The reported quantified diversities exhibit high correlations to the prediction performance.
Stichworte
Random subspace method;
Bagging;
Regression;
Negative correlation learning;
Ensemble learning;
Self-organizing maps
Erscheinungsjahr
2011
Zeitschriftentitel
Neural Networks
Band
24
Ausgabe
1
Seite(n)
130-141
ISSN
0893-6080
Page URI
https://pub.uni-bielefeld.de/record/2093532
Zitieren
Scherbart A, Nattkemper TW. Looking inside self-organizing map ensembles with resampling and negative correlation learning. Neural Networks. 2011;24(1):130-141.
Scherbart, A., & Nattkemper, T. W. (2011). Looking inside self-organizing map ensembles with resampling and negative correlation learning. Neural Networks, 24(1), 130-141. https://doi.org/10.1016/j.neunet.2010.08.004
Scherbart, Alexandra, and Nattkemper, Tim Wilhelm. 2011. “Looking inside self-organizing map ensembles with resampling and negative correlation learning”. Neural Networks 24 (1): 130-141.
Scherbart, A., and Nattkemper, T. W. (2011). Looking inside self-organizing map ensembles with resampling and negative correlation learning. Neural Networks 24, 130-141.
Scherbart, A., & Nattkemper, T.W., 2011. Looking inside self-organizing map ensembles with resampling and negative correlation learning. Neural Networks, 24(1), p 130-141.
A. Scherbart and T.W. Nattkemper, “Looking inside self-organizing map ensembles with resampling and negative correlation learning”, Neural Networks, vol. 24, 2011, pp. 130-141.
Scherbart, A., Nattkemper, T.W.: Looking inside self-organizing map ensembles with resampling and negative correlation learning. Neural Networks. 24, 130-141 (2011).
Scherbart, Alexandra, and Nattkemper, Tim Wilhelm. “Looking inside self-organizing map ensembles with resampling and negative correlation learning”. Neural Networks 24.1 (2011): 130-141.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Review of software tools for design and analysis of large scale MRM proteomic datasets.
Colangelo CM, Chung L, Bruce C, Cheung KH., Methods 61(3), 2013
PMID: 23702368
Colangelo CM, Chung L, Bruce C, Cheung KH., Methods 61(3), 2013
PMID: 23702368
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 20846822
PubMed | Europe PMC
Suchen in