Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein

Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F (1994)
The Plant Journal 6(4): 555-565.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Merkle, ThomasUniBi; Haizel, T.; Matsumoto, T.; Harter, K.; Dallmann, G.; Nagy, F.
Abstract / Bemerkung
Mutations in which the onset of mitosis is uncoupled from the completion of DNA replication has recently been described. Characterization of these mutants led to the identification of Pim1/Spi1 in fission yeast and RCC1/Ran proteins in mammalian cells. Their Saccharomyces cerevisae homologues, the MTR1/CNR1 proteins, appear to be involved in controlling RNA metabolism and transport. Here the isolation and partial characterization of plant cDNA clones which encode proteins homologous to the mammalian/fission yeast/budding yeast Ran/Spi/CNR proteins are reported. Higher plants appear to contain more than one gene per haploid genome which codes for Ran proteins. These genes are expressed in different plant tissues, including root tips and stems, known to contain mitotically active cells. The tobacco Ran-like proteins, like their mammalian and yeast homologues, are soluble proteins which are found in the cytoplasm and in the nucleus. In addition, it has been shown that overexpression of the tobacco Nt-Ran-A1 cDNA suppressed the phenotype of the temperature-sensitive fission yeast pim1-46 mutant. These results suggest that the plant Ran genes can be functionally equivalent to the mammalian/fission yeast/budding yeast Ran/Spi/CNR genes and that they may play a role: (i) in maintaining a coordinated cell cycle; (ii) in controlling RNA metabolism and transport in higher plants; and/or (iii) in protein import into the nucleus.
Erscheinungsjahr
1994
Zeitschriftentitel
The Plant Journal
Band
6
Ausgabe
4
Seite(n)
555-565
ISSN
0960-7412
eISSN
1365-313X
Page URI
https://pub.uni-bielefeld.de/record/2092391

Zitieren

Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F. Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. The Plant Journal. 1994;6(4):555-565.
Merkle, T., Haizel, T., Matsumoto, T., Harter, K., Dallmann, G., & Nagy, F. (1994). Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. The Plant Journal, 6(4), 555-565. https://doi.org/10.1046/j.1365-313X.1994.6040555.x
Merkle, Thomas, Haizel, T., Matsumoto, T., Harter, K., Dallmann, G., and Nagy, F. 1994. “Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein”. The Plant Journal 6 (4): 555-565.
Merkle, T., Haizel, T., Matsumoto, T., Harter, K., Dallmann, G., and Nagy, F. (1994). Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. The Plant Journal 6, 555-565.
Merkle, T., et al., 1994. Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. The Plant Journal, 6(4), p 555-565.
T. Merkle, et al., “Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein”, The Plant Journal, vol. 6, 1994, pp. 555-565.
Merkle, T., Haizel, T., Matsumoto, T., Harter, K., Dallmann, G., Nagy, F.: Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. The Plant Journal. 6, 555-565 (1994).
Merkle, Thomas, Haizel, T., Matsumoto, T., Harter, K., Dallmann, G., and Nagy, F. “Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein”. The Plant Journal 6.4 (1994): 555-565.

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

GAP Activity, but Not Subcellular Targeting, Is Required for Arabidopsis RanGAP Cellular and Developmental Functions.
Boruc J, Griffis AH, Rodrigo-Peiris T, Zhou X, Tilford B, Van Damme D, Meier I., Plant Cell 27(7), 2015
PMID: 26091693
Nucleo-cytoplasmic transport of proteins and RNA in plants.
Merkle T., Plant Cell Rep 30(2), 2011
PMID: 20960203
Mechanisms of plant spindle formation.
Zhang H, Dawe RK., Chromosome Res 19(3), 2011
PMID: 21424324
The Arabidopsis nuclear pore and nuclear envelope.
Meier I, Brkljacic J., Arabidopsis Book 8(), 2010
PMID: 22303264
Perinuclear and nuclear envelope localizations of Arabidopsis Ran proteins.
Ma L, Hong Z, Zhang Z., Plant Cell Rep 26(8), 2007
PMID: 17530257
Nuclear import and export of plant virus proteins and genomes.
Krichevsky Alexander, Kozlovsky StanislavV, Gafni Yedidya, Citovsky Vitaly., Mol Plant Pathol 7(2), 2006
PMID: IND43783878
Cloning and characterization of a cDNA encoding Ran binding protein from wheat.
Tian B, Tian B, Lin ZB, Ding Y, Ma QH., DNA Seq 17(2), 2006
PMID: 17076256
Inositol 1,4,5-trisphosphate and Ran expression during simulated and real microgravity.
Kriegs B, Theisen R, Schnabl H., Protoplasma 229(2-4), 2006
PMID: 17180498
Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula.
Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V., Plant Physiol 139(2), 2005
PMID: 16183836
Visualizing chromosome structure/organization.
Lam E, Kato N, Watanabe K., Annu Rev Plant Biol 55(), 2004
PMID: 15377231
The plant nuclear envelope: new prospects for a poorly understood structure.
Brandizzi F, Irons SL, Evans DE., New Phytol 163(2), 2004
PMID: IND43638328
Differential expression of genes in apical and basal tissues of expanding tobacco leaves.
Trainotti L, Pavanello A, Casadoro G., Plant Sci 167(4), 2004
PMID: IND43645424
Analysis of the small GTPase gene superfamily of Arabidopsis.
Vernoud V, Horton AC, Yang Z, Nielsen E., Plant Physiol 131(3), 2003
PMID: 12644670
Small GTPases: versatile signaling switches in plants.
Yang Z., Plant Cell 14 Suppl(), 2002
PMID: 12045289
Protein nucleocytoplasmic transport and its light regulation in plants.
Yamamoto N, Deng XW., Genes Cells 4(9), 1999
PMID: 10526236
A novel importin alpha from rice, a component involved in the process of nuclear protein transport.
Iwasaki T, Matsuki R, Shoji K, Sanmiya K, Miyao M, Yamamoto N., FEBS Lett 428(3), 1998
PMID: 9654145
The nuclear pore complex.
Heese-Peck A, Raikhel NV., Plant Mol Biol 38(1-2), 1998
PMID: 9738965
Immunological detection of potential signal-transduction proteins expressed during wheat somatic tissue culture.
Nato A, Mirshahi A, Tichtinsky G, Mirshahi M, Faure JP, Lavergne D, De Buyser J, Jean C, Ducreux G, Henry Y., Plant Physiol 113(3), 1997
PMID: 9085574
The small nuclear GTPase Ran: how much does it run?
Rush MG, Drivas G, D'Eustachio P., Bioessays 18(2), 1996
PMID: 8851043
Nuclear import in permeabilized protoplasts from higher plants has unique features.
Hicks GR, Smith HM, Lobreaux S, Raikhel NV., Plant Cell 8(8), 1996
PMID: 8776900
Characterization of membrane-bound small GTP-binding proteins from Nicotiana tabacum.
Haizel T, Merkle T, Turck F, Nagy F., Plant Physiol 108(1), 1995
PMID: 7784525
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 7987414
PubMed | Europe PMC

Suchen in

Google Scholar