Spotlight on post-transcriptional control in the circadian system

Staiger D, Köster T (2011)
Cellular and Molecular Life Sciences 68(1): 71-83.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
An endogenous timing mechanism, the circadian clock, causes rhythmic expression of a considerable fraction of the genome of most organisms to optimally align physiology and behavior with their environment. Circadian clocks are self-sustained oscillators primarily based on transcriptional feedback loops and post-translational modification of clock proteins. It is increasingly becoming clear that regulation at the RNA level strongly impacts the cellular circadian transcriptome and proteome as well as the oscillator mechanism itself. This review focuses on posttranscriptional events, discussing RNA-binding proteins that, by influencing the timing of pre-mRNA splicing, polyadenylation and RNA decay, shape rhythmic expression profiles. Furthermore, recent findings on the contribution of microRNAs to orchestrating circadian rhythms are summarized.
Circadian clock; Splicing; Post-transcriptional; miRNA; RNA; RNA-binding proteins; decay
Cellular and Molecular Life Sciences
Page URI


Staiger D, Köster T. Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences. 2011;68(1):71-83.
Staiger, D., & Köster, T. (2011). Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences, 68(1), 71-83.
Staiger, Dorothee, and Köster, Tino. 2011. “Spotlight on post-transcriptional control in the circadian system”. Cellular and Molecular Life Sciences 68 (1): 71-83.
Staiger, D., and Köster, T. (2011). Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences 68, 71-83.
Staiger, D., & Köster, T., 2011. Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences, 68(1), p 71-83.
D. Staiger and T. Köster, “Spotlight on post-transcriptional control in the circadian system”, Cellular and Molecular Life Sciences, vol. 68, 2011, pp. 71-83.
Staiger, D., Köster, T.: Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences. 68, 71-83 (2011).
Staiger, Dorothee, and Köster, Tino. “Spotlight on post-transcriptional control in the circadian system”. Cellular and Molecular Life Sciences 68.1 (2011): 71-83.

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Circadian Posttranscriptional Regulatory Mechanisms in Mammals.
Green CB., Cold Spring Harb Perspect Biol 10(6), 2018
PMID: 28778869
Cinnamic acid shortens the period of the circadian clock in mice.
Oishi K, Yamamoto S, Oike H, Ohkura N, Taniguchi M., Biochem Biophys Rep 9(), 2017
PMID: 28956010
Light/Dark Environmental Cycle Imposes a Daily Profile in the Expression of microRNAs in Rat CD133(+) Cells.
Marçola M, Lopes-Ramos CM, Pereira EP, Cecon E, Fernandes PA, Tamura EK, Camargo AA, Parmigiani RB, Markus RP., J Cell Physiol 231(9), 2016
PMID: 26728119
An Untranslated cis-Element Regulates the Accumulation of Multiple C4 Enzymes in Gynandropsis gynandra Mesophyll Cells.
Williams BP, Burgess SJ, Reyna-Llorens I, Knerova J, Aubry S, Stanley S, Hibberd JM., Plant Cell 28(2), 2016
PMID: 26772995
Comparative Proteomic Analysis of the Response of Maize (Zea mays L.) Leaves to Long Photoperiod Condition.
Wu L, Tian L, Wang S, Zhang J, Liu P, Tian Z, Zhang H, Liu H, Chen Y., Front Plant Sci 7(), 2016
PMID: 27313588
Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.
Potter GD, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ., Endocr Rev 37(6), 2016
PMID: 27763782
Daily variations in the expression of miR-16 and miR-181a in human leukocytes.
Figueredo Dde S, Gitaí DL, Andrade TG., Blood Cells Mol Dis 54(4), 2015
PMID: 25641414
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
Perez-Santángelo S, Schlaen RG, Yanovsky MJ., Brief Funct Genomics 12(1), 2013
PMID: 23165351
Circadian clocks and metabolism.
Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J., Handb Exp Pharmacol (217), 2013
PMID: 23604478
Ribonucleoprotein complexes that control circadian clocks.
Wang D, Liang X, Chen X, Guo J., Int J Mol Sci 14(5), 2013
PMID: 23698761
The circadian clock goes genomic.
Staiger D, Shin J, Johansson M, Davis SJ., Genome Biol 14(6), 2013
PMID: 23796230
Emerging roles for post-transcriptional regulation in circadian clocks.
Lim C, Allada R., Nat Neurosci 16(11), 2013
PMID: 24165681
Circadian clock-dependent gating in ABA signalling networks.
Seung D, Risopatron JP, Jones BJ, Marc J., Protoplasma 249(3), 2012
PMID: 21773710
Dynamic Light Regulation of Translation Status in Arabidopsis thaliana.
Juntawong P, Bailey-Serres J., Front Plant Sci 3(), 2012
PMID: 22645595
Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.
Shapiro-Reznik M, Jilg A, Lerner H, Earnest DJ, Zisapel N., PLoS One 7(5), 2012
PMID: 22662246
Regulation of alternative splicing by the circadian clock and food related cues.
McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J., Genome Biol 13(6), 2012
PMID: 22721557
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS., Science 338(6105), 2012
PMID: 22936566
Circadian surprise--it's not all about transcription.
Doherty CJ, Kay SA., Science 338(6105), 2012
PMID: 23087238
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation.
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M., Elife 1(), 2012
PMID: 23150795
Genetics of circadian rhythms in Mammalian model organisms.
Lowrey PL, Takahashi JS., Adv Genet 74(), 2011
PMID: 21924978
The novel gene twenty-four defines a critical translational step in the Drosophila clock.
Lim C, Lee J, Choi C, Kilman VL, Kim J, Park SM, Jang SK, Allada R, Choe J., Nature 470(7334), 2011
PMID: 21331043
Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.
Zhang L, Weng W, Guo J., FEBS Lett 585(10), 2011
PMID: 21414314
Circadian rhythms and mood regulation: insights from pre-clinical models.
McClung CA., Eur Neuropsychopharmacol 21 Suppl 4(), 2011
PMID: 21835596
Alternative splicing at the right time.
Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ., RNA Biol 8(6), 2011
PMID: 21941124

108 References

Daten bereitgestellt von Europe PubMed Central.

The mammalian circadian timing system: from gene expression to physiology.
Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U., Chromosoma 113(3), 2004
PMID: 15338234
Post-translational modifications regulate the ticking of the circadian clock.
Gallego M, Virshup DM., Nat. Rev. Mol. Cell Biol. 8(2), 2007
PMID: 17245414
Post-translational modifications in circadian rhythms.
Mehra A, Baker CL, Loros JJ, Dunlap JC., Trends Biochem. Sci. 34(10), 2009
PMID: 19740663
Posttranscriptional and posttranslational regulation of clock genes.
Harms E, Kivimae S, Young MW, Saez L., J. Biol. Rhythms 19(5), 2004
PMID: 15534317

RNA-binding proteins and post-transcriptional gene regulation.
Glisovic T, Bachorik JL, Yong J, Dreyfuss G., FEBS Lett. 582(14), 2008
PMID: 18342629
Eukaryotic mRNPs may represent posttranscriptional operons.
Keene JD, Tenenbaum SA., Mol. Cell 9(6), 2002
PMID: 12086614

SA, Proc Natl Acad Sci USA 97(), 2000
RNA regulons: coordination of post-transcriptional events.
Keene JD., Nat. Rev. Genet. 8(7), 2007
PMID: 17572691
Biological clocks and the coordination theory of RNA operons and regulons.
Keene JD., Cold Spring Harb. Symp. Quant. Biol. 72(), 2007
PMID: 18419273

D, Philos Trans R Soc Lond B 356(), 2001
Extensive and divergent circadian gene expression in liver and heart.
Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ., Nature 417(6884), 2002
PMID: 11967526
Coordinated transcription of key pathways in the mouse by the circadian clock.
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB., Cell 109(3), 2002
PMID: 12015981
Circadian and light-regulated expression of nitrate reductase in Arabidopsis.
Pilgrim ML, Caspar T, Quail PH, McClung CR., Plant Mol. Biol. 23(2), 1993
PMID: 8219070

Circadian orchestration of the hepatic proteome.
Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O'Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH., Curr. Biol. 16(11), 2006
PMID: 16753565
Molecular bases for circadian clocks.
Dunlap JC., Cell 96(2), 1999
PMID: 9988221
Circadian rhythms from multiple oscillators: lessons from diverse organisms.
Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ., Nat. Rev. Genet. 6(7), 2005
PMID: 15951747
Circadian organization of behavior and physiology in Drosophila.
Allada R, Chung BY., Annu. Rev. Physiol. 72(), 2010
PMID: 20148690
The circadian timekeeping system of Drosophila.
Hardin PE., Curr. Biol. 15(17), 2005
PMID: 16139204
vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock.
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J., Cell 112(3), 2003
PMID: 12581523
The mammalian circadian timing system: organization and coordination of central and peripheral clocks.
Dibner C, Schibler U, Albrecht U., Annu. Rev. Physiol. 72(), 2010
PMID: 20148687
Systems biology of mammalian circadian clocks.
Ukai H, Ueda HR., Annu. Rev. Physiol. 72(), 2010
PMID: 20148689
Feedback repression is required for mammalian circadian clock function.
Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB., Nat. Genet. 38(3), 2006
PMID: 16474406
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.
Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U., Cell 110(2), 2002
PMID: 12150932
A transcription factor response element for gene expression during circadian night.
Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S., Nature 418(6897), 2002
PMID: 12152080
Interlocked feedback loops of the circadian clock of Neurospora crassa.
Brunner M, Kaldi K., Mol. Microbiol. 68(2), 2008
PMID: 18312266
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana.
Locke JC, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ., Mol. Syst. Biol. 2(), 2006
PMID: 17102804
A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock.
Iliev D, Voytsekh O, Schmidt EM, Fiedler M, Nykytenko A, Mittag M., Plant Physiol. 142(2), 2006
PMID: 16920878


J, J Cell Sci 16(), 1992
At least four distinct circadian regulatory mechanisms are required for all phases of rhythms in mRNA amount.
Jacobshagen S, Kessler B, Rinehart CA., J. Biol. Rhythms 23(6), 2008
PMID: 19060260
Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila.
Stanewsky R, Jamison CF, Plautz JD, Kay SA, Hall JC., EMBO J. 16(16), 1997
PMID: 9305642
mRNA stability in eukaryotes.
Mitchell P, Tollervey D., Curr. Opin. Genet. Dev. 10(2), 2000
PMID: 10753781
Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation.
Woo KC, Kim TD, Lee KH, Kim DY, Kim W, Lee KY, Kim KT., Nucleic Acids Res. 37(1), 2008
PMID: 19010962
Circadian amplitude of cryptochrome 1 is modulated by mRNA stability regulation via cytoplasmic hnRNP D oscillation.
Woo KC, Ha DC, Lee KH, Kim DY, Kim TD, Kim KT., Mol. Cell. Biol. 30(1), 2010
PMID: 19858287
Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation.
Kim TD, Kim JS, Kim JH, Myung J, Chae HD, Woo KC, Jang SK, Koh DS, Kim KT., Mol. Cell. Biol. 25(8), 2005
PMID: 15798208
Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production.
Kim TD, Woo KC, Cho S, Ha DC, Jang SK, Kim KT., Genes Dev. 21(7), 2007
PMID: 17403780
BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites.
Benjamin D, Schmidlin M, Min L, Gross B, Moroni C., Mol. Cell. Biol. 26(24), 2006
PMID: 17030608
Regulation of the Neurospora circadian clock by an RNA helicase.
Cheng P, He Q, He Q, Wang L, Liu Y., Genes Dev. 19(2), 2004
PMID: 15625191

RA, Proc Natl Acad Sci USA 99(), 2002
Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway.
Lidder P, Gutierrez RA, Salome PA, McClung CR, Green PJ., Plant Physiol. 138(4), 2005
PMID: 16055688
CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis.
Yakir E, Hilman D, Hassidim M, Green RM., Plant Physiol. 145(3), 2007
PMID: 17873091
The mechanism of eukaryotic translation initiation and principles of its regulation.
Jackson RJ, Hellen CU, Pestova TV., Nat. Rev. Mol. Cell Biol. 11(2), 2010
PMID: 20094052
Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length.
Robinson BG, Frim DM, Schwartz WJ, Majzoub JA., Science 241(4863), 1988
PMID: 3388044
Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse.
Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB, Besharse JC., BMC Dev. Biol. 1(), 2001
PMID: 11394964

CB, Proc Natl Acad Sci USA 104(), 2007

BH, Proc Natl Acad Sci USA 101(), 2004
How a circadian clock adapts to seasonal decreases in temperature and day length.
Majercak J, Sidote D, Hardin PE, Edery I., Neuron 24(1), 1999
PMID: 10677039

C, Proc Natl Acad Sci USA 94(), 1997
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schoning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J. 52(6), 2007
PMID: 17924945
Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy.
Schuttpelz M, Schoning JC, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M., J. Am. Chem. Soc. 130(29), 2008
PMID: 18576621
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J. 55(3), 2008
PMID: 18410480
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
Cold shock response in mammalian cells.
Fujita J., J. Mol. Microbiol. Biotechnol. 1(2), 1999
PMID: 10943555
Diurnal change of the cold-inducible RNA-binding protein (Cirp) expression in mouse brain.
Nishiyama H, Xue JH, Sato T, Fukuyama H, Mizuno N, Houtani T, Sugimoto T, Fujita J., Biochem. Biophys. Res. Commun. 245(2), 1998
PMID: 9571190
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock.
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U., PLoS Biol. 5(2), 2007
PMID: 17298173
Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays.
Hazen SP, Naef F, Quisel T, Gendron JM, Chen H, Ecker JR, Borevitz JO, Kay SA., Genome Biol. 10(2), 2009
PMID: 19210792
Intron retention is a major phenomenon in alternative splicing in Arabidopsis.
Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R., Plant J. 39(6), 2004
PMID: 15341630
The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior.
Sofola O, Sundram V, Ng F, Kleyner Y, Morales J, Botas J, Jackson FR, Nelson DL., J. Neurosci. 28(41), 2008
PMID: 18842880
Fragile X-related proteins regulate mammalian circadian behavioral rhythms.
Zhang J, Fang Z, Jud C, Vansteensel MJ, Kaasik K, Lee CC, Albrecht U, Tamanini F, Meijer JH, Oostra BA, Nelson DL., Am. J. Hum. Genet. 83(1), 2008
PMID: 18589395

S, Proc Natl Acad Sci USA 104(), 2007
Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells.
Hock J, Weinmann L, Ender C, Rudel S, Kremmer E, Raabe M, Urlaub H, Meister G., EMBO Rep. 8(11), 2007
PMID: 17932509
The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits.
Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M., Eukaryotic Cell 3(3), 2004
PMID: 15190002
Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtii.
Waltenberger H, Schneid C, Grosch JO, Bareiss A, Mittag M., Mol. Genet. Genomics 265(1), 2001
PMID: 11370865
The impact of microRNAs on protein output.
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP., Nature 455(7209), 2008
PMID: 18668037
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
Filipowicz W, Bhattacharyya SN, Sonenberg N., Nat. Rev. Genet. 9(2), 2008
PMID: 18197166
Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression.
Zdanowicz A, Thermann R, Kowalska J, Jemielity J, Duncan K, Preiss T, Darzynkiewicz E, Hentze MW., Mol. Cell 35(6), 2009
PMID: 19782035
Revisiting the principles of microRNA target recognition and mode of action.
Brodersen P, Voinnet O., Nat. Rev. Mol. Cell Biol. 10(2), 2009
PMID: 19145236
Circadian regulation of a limited set of conserved microRNAs in Drosophila.
Yang M, Lee JE, Padgett RW, Edery I., BMC Genomics 9(), 2008
PMID: 18284684
A role for microRNAs in the Drosophila circadian clock.
Kadener S, Menet JS, Sugino K, Horwich MD, Weissbein U, Nawathean P, Vagin VV, Zamore PD, Nelson SB, Rosbash M., Genes Dev. 23(18), 2009
PMID: 19696147
The bantam gene regulates Drosophila growth.
Hipfner DR, Weigmann K, Cohen SM., Genetics 161(4), 2002
PMID: 12196398
microRNA modulation of circadian-clock period and entrainment.
Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K., Neuron 54(5), 2007
PMID: 17553428
MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster.
Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D., J. Biol. Chem. 282(34), 2007
PMID: 17597072
Integration of microRNA miR-122 in hepatic circadian gene expression.
Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM, Schibler U., Genes Dev. 23(11), 2009
PMID: 19487572
Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398.
Sire C, Moreno AB, Garcia-Chapa M, Lopez-Moya JJ, San Segundo B., FEBS Lett. 583(6), 2009
PMID: 19236868
The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.
Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM., Plant Cell 19(9), 2007
PMID: 17890372
Role for antisense RNA in regulating circadian clock function in Neurospora crassa.
Kramer C, Loros JJ, Dunlap JC, Crosthwaite SK., Nature 421(6926), 2003
PMID: 12607002
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970
Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing.
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C., Science 327(5961), 2009
PMID: 19965720
A genome-wide RNAi screen for modifiers of the circadian clock in human cells.
Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss JW 3rd, Janes J, Su AI, Hogenesch JB, Kay SA., Cell 139(1), 2009
PMID: 19765810
The RNA structure alignment ontology.
Brown JW, Birmingham A, Griffiths PE, Jossinet F, Kachouri-Lafond R, Knight R, Lang BF, Leontis N, Steger G, Stombaugh J, Westhof E., RNA 15(9), 2009
PMID: 19622678

Q, Proc Natl Acad Sci USA 96(), 1999
miRNA-regulated dynamics in circadian oscillator models.
Nandi A, Vaz C, Bhattacharya A, Ramaswamy R., BMC Syst Biol 3(), 2009
PMID: 19413912
miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts.
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D., Cell 140(5), 2010
PMID: 20211135

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 20803230
PubMed | Europe PMC

Suchen in

Google Scholar