Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs)

Niemeier S, Alves jun. L, Merkle T (2010)
BMC Research Notes 3(1): 59.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Background: microRNAs (miRNAs) are endogenous small non-coding RNAs that post-transcriptionally regulate gene expression. In plants, they typically show high complementarity to a single sequence motif within their target mRNAs and act by catalyzing specific mRNA cleavage and degradation. miRNAs are processed from much longer primary transcripts via precursor miRNAs containing fold-back structures. Leaving these secondary structures intact, miRNAs can be re-designed experimentally to target mRNAs of choice. Results: We designed primary synthetic miRNAs (pri-smiRNAs) on the basis of the primary transcript of the Arabidopsis MIR159A gene by replacing the original miR159a and the corresponding miR159a* with novel sequences, keeping the overall secondary structure as predicted by the program RNAfold. We used the program RNAhybrid to optimize smiRNA design and to screen the complete Arabidopsis transcriptome for potential off-targets. To improve the molecular cloning of the pri-smiRNA we inserted restriction sites in the original MIR159A primary transcript to easily accommodate the smiRNA/smiRNA* DNA fragment. As a proof-of-concept, we targeted the single gene encoding chalcone synthase (CHS) in Arabidopsis. We demonstrate smiRNA(CHS) expression and CHS mRNA cleavage in different transgenic lines. Phenotypic changes in these lines were observed for seed color and flavonol derivatives, and quantified with respect to anthocyanin content. We also tested the effect of mismatches and excess G:U base pairs on knockdown efficiency. Conclusions: RNAhybrid-assisted design of smiRNAs and generation of pri-smiRNAs using a novel vector containing restriction sites greatly improves specificity and speed of the generation of stable knockdown lines for functional analyses in plants.
Erscheinungsjahr
2010
Zeitschriftentitel
BMC Research Notes
Band
3
Ausgabe
1
Art.-Nr.
59
ISSN
1756-0500
Page URI
https://pub.uni-bielefeld.de/record/1996275

Zitieren

Niemeier S, Alves jun. L, Merkle T. Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Research Notes. 2010;3(1): 59.
Niemeier, S., Alves jun., L., & Merkle, T. (2010). Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Research Notes, 3(1), 59. https://doi.org/10.1186/1756-0500-3-59
Niemeier, Sandra, Alves jun., Leonardo, and Merkle, Thomas. 2010. “Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs)”. BMC Research Notes 3 (1): 59.
Niemeier, S., Alves jun., L., and Merkle, T. (2010). Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Research Notes 3:59.
Niemeier, S., Alves jun., L., & Merkle, T., 2010. Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Research Notes, 3(1): 59.
S. Niemeier, L. Alves jun., and T. Merkle, “Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs)”, BMC Research Notes, vol. 3, 2010, : 59.
Niemeier, S., Alves jun., L., Merkle, T.: Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs). BMC Research Notes. 3, : 59 (2010).
Niemeier, Sandra, Alves jun., Leonardo, and Merkle, Thomas. “Improvement of the design and generation of highly specific plant knockdown lines using primary synthetic microRNAs (pri-smiRNAs)”. BMC Research Notes 3.1 (2010): 59.

Link(s) zu Volltext(en)
Access Level
OA Open Access

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network.
Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I., Front Plant Sci 8(), 2017
PMID: 28446918

43 References

Daten bereitgestellt von Europe PubMed Central.

MicroRNAs in plants.
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP., Genes Dev. 16(13), 2002
PMID: 12101121
Prediction of plant microRNA targets.
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP., Cell 110(4), 2002
PMID: 12202040
The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G., Nature 403(6772), 2000
PMID: 10706289
Revisiting the principles of microRNA target recognition and mode of action.
Brodersen P, Voinnet O., Nat. Rev. Mol. Cell Biol. 10(2), 2009
PMID: 19145236
Widespread translational inhibition by plant miRNAs and siRNAs.
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O., Science 320(5880), 2008
PMID: 18483398
Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA.
Llave C, Xie Z, Kasschau KD, Carrington JC., Science 297(5589), 2002
PMID: 12242443
Control of leaf morphogenesis by microRNAs.
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D., Nature 425(6955), 2003
PMID: 12931144
Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
Wang XJ, Reyes JL, Chua NH, Gaasterland T., Genome Biol. 5(9), 2004
PMID: 15345049
Expression of Arabidopsis MIRNA genes.
Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC., Plant Physiol. 138(4), 2005
PMID: 16040653
Elucidation of the small RNA component of the transcriptome.
Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ., Science 309(5740), 2005
PMID: 16141074
A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP., Genes Dev. 20(24), 2006
PMID: 17182867
High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes.
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC., PLoS ONE 2(2), 2007
PMID: 17299599
Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species.
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y., Plant Cell 18(5), 2006
PMID: 16603651
Highly specific gene silencing by artificial microRNAs in Arabidopsis.
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D., Plant Cell 18(5), 2006
PMID: 16531494
Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance.
Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH., Nat. Biotechnol. 24(11), 2006
PMID: 17057702
Fast and effective prediction of microRNA/target duplexes.
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R., RNA 10(10), 2004
PMID: 15383676
Mutations affecting the testa color in Arabidopsis
AUTHOR UNKNOWN, 1990
Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana.
Alves L Jr, Niemeier S, Hauenschild A, Rehmsmeier M, Merkle T., Nucleic Acids Res. 37(12), 2009
PMID: 19417064
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744487
Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
Mathews DH, Sabina J, Zuker M, Turner DH., J. Mol. Biol. 288(5), 1999
PMID: 10329189
Flavonoid-specific staining of Arabidopsis thaliana.
Sheahan JJ, Rechnitz GA., BioTechniques 13(6), 1992
PMID: 1282347
Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene.
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S., Plant Physiol. 139(4), 2005
PMID: 16299184
Gene silencing in plants using artificial microRNAs and other small RNAs.
Ossowski S, Schwab R, Weigel D., Plant J. 53(4), 2008
PMID: 18269576
RNA silencing platforms in plants.
Watson JM, Fusaro AF, Wang M, Waterhouse PM., FEBS Lett. 579(26), 2005
PMID: 16139270
Specific effects of microRNAs on the plant transcriptome.
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D., Dev. Cell 8(4), 2005
PMID: 15809034
MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region.
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP., EMBO J. 23(16), 2004
PMID: 15282547
Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide.
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y., Cell 133(1), 2008
PMID: 18342361
Nuclear processing and export of microRNAs in Arabidopsis.
Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS., Proc. Natl. Acad. Sci. U.S.A. 102(10), 2005
PMID: 15738428
A greedy algorithm for aligning DNA sequences.
Zhang Z, Schwartz S, Wagner L, Miller W., J. Comput. Biol. 7(1-2), 2000
PMID: 10890397
New plant binary vectors with selectable markers located proximal to the left T-DNA border.
Becker D, Kemper E, Schell J, Masterson R., Plant Mol. Biol. 20(6), 1992
PMID: 1463855
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 20202197
PubMed | Europe PMC

Suchen in

Google Scholar