Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins

Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser KD (2010)
Plant Physiology 154(4): 1831-1841.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Pedersen, Dorthe S.; Merkle, ThomasUniBi; Marktl, Barbara; Lildballe, Dorte L.; Antosch, Martin; Bergmann, ThorstenUniBi; Tönsing, KatjaUniBi; Anselmetti, DarioUniBi ; Grasser, Klaus D.
Abstract / Bemerkung
High mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that as architectural factors are involved in the regulation of transcription and other DNA-dependent processes. HMGB proteins are generally considered nuclear proteins, although mammalian HMGB1 can also be detected in the cytoplasm and outside of cells. Plant HMGB proteins studied so far were found exclusively in the cell nucleus. Using immunofluorescence and fluorescence microscopy of HMGB proteins fused to the green fluorescent protein, we have examined the subcellular localization of the Arabidopsis (Arabidopsis thaliana) HMGB2/3 and HMGB4 proteins, revealing that, in addition to a prominent nuclear localization, they can be detected also in the cytoplasm. The nucleocytoplasmic distribution appears to depend on the cell type. By time-lapse fluorescence microscopy, it was observed that the HMGB2 and HMGB4 proteins tagged with photoactivatable green fluorescent protein can shuttle between the nucleus and the cytoplasm, while HMGB1 remains nuclear. The balance between the basic amino-terminal and the acidic carboxyl-terminal domains flanking the central HMG box DNA-binding domain critically influences the nucleocytoplasmic distribution of the HMGB proteins. Moreover, protein kinase CK2-mediated phosphorylation of the acidic tail modulates the intranuclear distribution of HMGB2. Collectively, our results show that, in contrast to other Arabidopsis HMGB proteins such as HMGB1 and HMGB5, the HMGB2/3 and HMGB4 proteins occur preferentially in the cell nucleus, but to various extents also in the cytoplasm.
Plant Physiology
Page URI


Pedersen DS, Merkle T, Marktl B, et al. Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins. Plant Physiology. 2010;154(4):1831-1841.
Pedersen, D. S., Merkle, T., Marktl, B., Lildballe, D. L., Antosch, M., Bergmann, T., Tönsing, K., et al. (2010). Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins. Plant Physiology, 154(4), 1831-1841.
Pedersen, D. S., Merkle, T., Marktl, B., Lildballe, D. L., Antosch, M., Bergmann, T., Tönsing, K., Anselmetti, D., and Grasser, K. D. (2010). Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins. Plant Physiology 154, 1831-1841.
Pedersen, D.S., et al., 2010. Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins. Plant Physiology, 154(4), p 1831-1841.
D.S. Pedersen, et al., “Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins”, Plant Physiology, vol. 154, 2010, pp. 1831-1841.
Pedersen, D.S., Merkle, T., Marktl, B., Lildballe, D.L., Antosch, M., Bergmann, T., Tönsing, K., Anselmetti, D., Grasser, K.D.: Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins. Plant Physiology. 154, 1831-1841 (2010).
Pedersen, Dorthe S., Merkle, Thomas, Marktl, Barbara, Lildballe, Dorte L., Antosch, Martin, Bergmann, Thorsten, Tönsing, Katja, Anselmetti, Dario, and Grasser, Klaus D. “Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins”. Plant Physiology 154.4 (2010): 1831-1841.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

ALY RNA-Binding Proteins Are Required for Nucleocytosolic mRNA Transport and Modulate Plant Growth and Development.
Pfaff C, Ehrnsberger HF, Flores-Tornero M, Sørensen BB, Schubert T, Längst G, Griesenbeck J, Sprunck S, Grasser M, Grasser KD., Plant Physiol 177(1), 2018
PMID: 29540591
Real-time monitoring of PtaHMGB activity in poplar transactivation assays.
Ramos-Sánchez JM, Triozzi PM, Moreno-Cortés A, Conde D, Perales M, Allona I., Plant Methods 13(), 2017
PMID: 28638438
Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis.
Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH., PLoS Genet 13(9), 2017
PMID: 28902852
Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.
Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF., PLoS Pathog 12(3), 2016
PMID: 27007252
Dynamic localization and the associated translocation mechanism of HMGBs in response to GCRV challenge in CIK cells.
Rao Y, Su J, Yang C, Yan N, Chen X, Feng X., Cell Mol Immunol 12(3), 2015
PMID: 25042634
The zinc-finger protein SPT4 interacts with SPT5L/KTF1 and modulates transcriptional silencing in Arabidopsis.
Köllen K, Dietz L, Bies-Etheve N, Lagrange T, Grasser M, Grasser KD., FEBS Lett 589(21), 2015
PMID: 26424658
Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins.
Bigeard J, Rayapuram N, Pflieger D, Hirt H., Proteomics 14(19), 2014
PMID: 24889195
Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana.
Bigeard J, Rayapuram N, Bonhomme L, Hirt H, Pflieger D., Proteomics 14(19), 2014
PMID: 24889360
Structural insights into the mechanism of negative regulation of single-box high mobility group proteins by the acidic tail domain.
Stott K, Watson M, Bostock MJ, Mortensen SA, Travers A, Grasser KD, Thomas JO., J Biol Chem 289(43), 2014
PMID: 25190813
Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors.
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD., PLoS One 8(3), 2013
PMID: 23555998
Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
Barkla BJ, Castellanos-Cervantes T, de León JL, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zörb C., Proteomics 13(12-13), 2013
PMID: 23723162
The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA.
de Souza TA, Soprano AS, de Lira NP, Quaresma AJ, Pauletti BA, Paes Leme AF, Benedetti CE., PLoS One 7(2), 2012
PMID: 22384209
Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry.
Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesić M, Zhou Y, Tiesler FK, Schleifenbaum F, Harter K., Plant Methods 8(1), 2012
PMID: 22789293
Unexpected mobility of plant chromatin-associated HMGB proteins.
Merkle T, Grasser KD., Plant Signal Behav 6(6), 2011
PMID: 21543902
The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes.
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GT, Houben A, Grasser KD., New Phytol 192(3), 2011
PMID: 21781122

54 References

Daten bereitgestellt von Europe PubMed Central.

HMGB proteins and gene expression.
Agresti A, Bianchi ME., Curr. Opin. Genet. Dev. 13(2), 2003
PMID: 12672494
Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion.
Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME., EMBO J. 22(20), 2003
PMID: 14532127
High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function.
Bustin M, Reeves R., Prog. Nucleic Acid Res. Mol. Biol. 54(), 1996
PMID: 8768072
The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice.
Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S, Bianchi ME., Nat. Genet. 22(3), 1999
PMID: 10391216
HMGB6 from Arabidopsis thaliana specifies a novel type of plant chromosomal HMGB protein.
Grasser KD, Grill S, Duroux M, Launholt D, Thomsen MS, Nielsen BV, Nielsen HK, Merkle T., Biochemistry 43(5), 2004
PMID: 14756567
High mobility group proteins of the plant HMGB family: dynamic chromatin modulators.
Grasser KD, Launholt D, Grasser M., Biochim. Biophys. Acta 1769(5-6), 2007
PMID: 17316841
Isolation and characterisation of high-mobility-group proteins from maize
Grasser KD, Wurz A, Feix G., 1991
The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins.
Grasser M, Lentz A, Lichota J, Merkle T, Grasser KD., J. Mol. Biol. 358(3), 2006
PMID: 16563436
CK2: a protein kinase in need of control.
Guerra B, Boldyreff B, Sarno S, Cesaro L, Issinger OG, Pinna LA., Pharmacol. Ther. 82(2-3), 1999
PMID: 10454208
pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation.
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM., Plant Mol. Biol. 42(6), 2000
PMID: 10890530
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744487
The HMG Chromosomal Proteins
Overlapping expression patterns among the genes encoding Arabidopsis chromosomal high mobility group (HMG) proteins.
Launholt D, Gronlund JT, Nielsen HK, Grasser KD., FEBS Lett. 581(6), 2007
PMID: 17316617
Ectopic expression of the maize chromosomal HMGB1 protein causes defects in root development of tobacco seedlings.
Lichota J, Ritt C, Grasser KD., Biochem. Biophys. Res. Commun. 318(1), 2004
PMID: 15110790
The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis.
Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD., J. Mol. Biol. 384(1), 2008
PMID: 18822296
The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2.
Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD., Plant J. 61(4), 2009
PMID: 19947984
Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time.
Martini J, Schmied K, Palmisano R, Toensing K, Anselmetti D, Merkle T., J. Struct. Biol. 158(3), 2007
PMID: 17363273
A plant in vitro system for the nuclear import of proteins.
Merkle T, Leclerc D, Marshallsay C, Nagy F., Plant J. 10(6), 1996
PMID: 9011099
Chromosomal proteins of Arabidopsis thaliana.
Moehs CP, McElwain EF, Spiker S., Plant Mol. Biol. 11(4), 1988
PMID: IND92000028
Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions.
Mosevitsky MI, Novitskaya VA, Iogannsen MG, Zabezhinsky MA., Eur. J. Biochem. 185(2), 1989
PMID: 2583185
A revised medium for rapid growth and bioassay with tobacco tissue cultures
Murashige T, Skoog F., 1962
Hmgb3 deficiency deregulates proliferation and differentiation of common lymphoid and myeloid progenitors.
Nemeth MJ, Cline AP, Anderson SM, Garrett-Beal LJ, Bodine DM., Blood 105(2), 2004
PMID: 15358624
Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation.
Nemeth MJ, Kirby MR, Bodine DM., Proc. Natl. Acad. Sci. U.S.A. 103(37), 2006
PMID: 16945912
The role of chromosomal HMGB proteins in plants.
Pedersen DS, Grasser KD., Biochim. Biophys. Acta 1799(1-2), 2010
PMID: 20123078
High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes.
Pedersen TJ, Arwood LJ, Spiker S, Guiltinan MJ, Thompson WF., Plant Mol. Biol. 16(1), 1991
PMID: 1840685
How do protein kinases recognize their substrates?
Pinna LA, Ruzzene M., Biochim. Biophys. Acta 1314(3), 1996
PMID: 8982275
Nuclear functions of the HMG proteins.
Reeves R., Biochim. Biophys. Acta 1799(1-2), 2009
PMID: 19748605
Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2.
Ronfani L, Ferraguti M, Croci L, Ovitt CE, Scholer HR, Consalez GG, Bianchi ME., Development 128(8), 2001
PMID: 11262228
High-mobility group chromosomal proteins of wheat.
Spiker S., J. Biol. Chem. 259(19), 1984
PMID: 6480596
Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2alpha.
Stemmer C, Leeming DJ, Franssen L, Grimm R, Grasser KD., Biochemistry 42(12), 2003
PMID: 12653554
Variability in Arabidopsis thaliana chromosomal high-mobility-group-1-like proteins.
Stemmer C, Ritt C, Igloi GL, Grimm R, Grasser KD., Eur. J. Biochem. 250(3), 1997
PMID: 9461286
The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins.
Stros M, Launholt D, Grasser KD., Cell. Mol. Life Sci. 64(19-20), 2007
PMID: 17599239
HMG1 and 2, and related 'architectural' DNA-binding proteins.
Thomas JO, Travers AA., Trends Biochem. Sci. 26(3), 2001
PMID: 11246022
Interactions of the basic N-terminal and the acidic C-terminal domains of the maize chromosomal HMGB1 protein.
Thomsen MS, Franssen L, Launholt D, Fojan P, Grasser KD., Biochemistry 43(25), 2004
PMID: 15209498
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently.
Wu Q, Zhang W, Pwee KH, Kumar PP., Arch. Biochem. Biophys. 411(1), 2003
PMID: 12590928
Targeting HMGB1 in inflammation.
Yang H, Tracey KJ., Biochim. Biophys. Acta 1799(1-2), 2009
PMID: 19948257
Linker histones versus HMG1/2: a struggle for dominance?
Zlatanova J, van Holde K., Bioessays 20(7), 1998
PMID: 9723008


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 20940346
PubMed | Europe PMC

Suchen in

Google Scholar