The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas

Cheung A, Stürzl W, Zeil J, Cheng K (2008)
Journal of Experimental Psychology. Animal Behavior Processes 34(1): 15-30.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.39 MB
Autor*in
Cheung, Allen; Stürzl, WolfgangUniBi; Zeil, Jochen; Cheng, Ken
Abstract / Bemerkung
Two recent studies testing navigation of rats in swimming pools have posed problems for any account of the use of purely geometric properties of space in navigation (M. Graham, M. A. Good, A. McGregor, & J. M. Pearce, 2006; J. M. Pearce, M. A. Good, P. M. Jones, & A. McGregor, 2004). The authors simulated I experiment from each study in a virtual reality environment to test whether experimental results could be explained by view-based navigation. The authors recorded a reference image at the target location and then determined global panoramic image differences between this image and images taken at regularly spaced locations throughout the arena. A formal model, in which an agent attempts to minimize image differences between the reference image and current views, generated trajectories that could be compared with the search performance of rats. For both experiments, this model mimics many aspects of rat behavior. View-based navigation provides a sufficient and parsimonious explanation for a range of navigational behaviors of rats under these experimental conditions.
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Experimental Psychology. Animal Behavior Processes
Band
34
Ausgabe
1
Seite(n)
15-30
ISSN
0097-7403
eISSN
1939-2184
Page URI
https://pub.uni-bielefeld.de/record/1948963

Zitieren

Cheung A, Stürzl W, Zeil J, Cheng K. The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes. 2008;34(1):15-30.
Cheung, A., Stürzl, W., Zeil, J., & Cheng, K. (2008). The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1), 15-30. https://doi.org/10.1037/0097-7403.34.1.15
Cheung, Allen, Stürzl, Wolfgang, Zeil, Jochen, and Cheng, Ken. 2008. “The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas”. Journal of Experimental Psychology. Animal Behavior Processes 34 (1): 15-30.
Cheung, A., Stürzl, W., Zeil, J., and Cheng, K. (2008). The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes 34, 15-30.
Cheung, A., et al., 2008. The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1), p 15-30.
A. Cheung, et al., “The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas”, Journal of Experimental Psychology. Animal Behavior Processes, vol. 34, 2008, pp. 15-30.
Cheung, A., Stürzl, W., Zeil, J., Cheng, K.: The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes. 34, 15-30 (2008).
Cheung, Allen, Stürzl, Wolfgang, Zeil, Jochen, and Cheng, Ken. “The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas”. Journal of Experimental Psychology. Animal Behavior Processes 34.1 (2008): 15-30.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:13Z
MD5 Prüfsumme
7fccbfdb1adf8781e4e8126509a32e29


33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Crossing boundaries: Global reorientation following transfer from the inside to the outside of an arena.
Buckley MG, Holden LJ, Spicer SG, Smith AD, Haselgrove M., J Exp Psychol Anim Learn Cogn 45(3), 2019
PMID: 31070431
Taking an insect-inspired approach to bird navigation.
Pritchard DJ, Healy SD., Learn Behav 46(1), 2018
PMID: 29484541
Extra-Visual Systems in the Spatial Reorientation of Cavefish.
Sovrano VA, Potrich D, Foà A, Bertolucci C., Sci Rep 8(1), 2018
PMID: 30523284
Does Spatial Navigation Have a Blind-Spot? Visiocentrism Is Not Enough to Explain the Navigational Behavior Comprehensively.
Hohol M, Baran B, Krzyżowski M, Francikowski J., Front Behav Neurosci 11(), 2017
PMID: 28867995
Blocking spatial navigation across environments that have a different shape.
Buckley MG, Smith AD, Haselgrove M., J Exp Psychol Anim Learn Cogn 42(1), 2016
PMID: 26569017
Three-dimensional models of natural environments and the mapping of navigational information.
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(6), 2015
PMID: 25863682
Visual stability-what is the problem?
Glennerster A., Front Psychol 6(), 2015
PMID: 26236253
Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.
Buckley MG, Smith AD, Haselgrove M., J Exp Psychol Learn Mem Cogn 40(2), 2014
PMID: 24245537
The role of local, distal, and global information in latent spatial learning.
Gilroy KE, Pearce JM., J Exp Psychol Anim Learn Cogn 40(2), 2014
PMID: 24893219
Principles of goal-directed spatial robot navigation in biomimetic models.
Milford M, Schulz R., Philos Trans R Soc Lond B Biol Sci 369(1655), 2014
PMID: 25267826
Overtraining and the use of feature and geometric cues for reorientation.
Sturz BR, Gaskin KA, Bodily KD., Psychol Res 77(2), 2013
PMID: 22212980
From natural geometry to spatial cognition.
Tommasi L, Chiandetti C, Pecchia T, Sovrano VA, Vallortigara G., Neurosci Biobehav Rev 36(2), 2012
PMID: 22206900
Latent spatial learning in an environment with a distinctive shape.
Horne MR, Gilroy KE, Cuell SF, Pearce JM., J Exp Psychol Anim Behav Process 38(2), 2012
PMID: 22369200
Spatial reorientation by geometry in bumblebees.
Sovrano VA, Rigosi E, Vallortigara G., PLoS One 7(5), 2012
PMID: 22624033
Influence of distal and proximal cues in encoding geometric information.
Vargas JP, Quintero E, López JC., Anim Cogn 14(3), 2011
PMID: 21184122
Geometric cues influence head direction cells only weakly in nondisoriented rats.
Knight R, Hayman R, Lin Ginzberg L, Jeffery K., J Neurosci 31(44), 2011
PMID: 22049411
Control of rodent and human spatial navigation by room and apparatus cues.
Hamilton DA, Johnson TE, Redhead ES, Verney SP., Behav Processes 81(2), 2009
PMID: 19121374
Ants learn geometry and features.
Wystrach A, Beugnon G., Curr Biol 19(1), 2009
PMID: 19119010
Modeling the effects of enclosure size on geometry learning.
Miller N., Behav Processes 80(3), 2009
PMID: 20522319
Ants in rectangular arenas: a support for the global matching theory.
Wystrach A., Commun Integr Biol 2(5), 2009
PMID: 19907695
Modelling place memory in crickets.
Mangan M, Webb B., Biol Cybern 101(4), 2009
PMID: 19862550
Whither geometry? Troubles of the geometric module.
Cheng K., Trends Cogn Sci 12(9), 2008
PMID: 18684662

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18248112
PubMed | Europe PMC

Suchen in

Google Scholar