Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis

Martini J, Hellmich W, Greif D, Becker A, Merkle T, Ros R, Ros A, Tönsing K, Anselmetti D (2007)
In: Subcellular Proteomics. Faupel M, Bertrand E (Eds); , 43. Heidelberg: Springer: 301-321.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Martini, Joerg; Hellmich, Wibke; Greif, DominikUniBi; Becker, Anke; Merkle, ThomasUniBi; Ros, Robert; Ros, Alexandra; Tönsing, KatjaUniBi; Anselmetti, DarioUniBi
Herausgeber*in
Faupel, Michel; Bertrand, Eric
Abstract / Bemerkung
Detailed and quantitative information about structure-function relation, concentrations and interaction kinetics of biological molecules and subcellular components is a key prerequisite to understand and model cellular organisation and temporal dynamics. In systems nanobi-ology, cellular processes are quantitatively investigated at the sensitivity level of single molecules and cells. This approach provides direct access to biomolecular information without being statistically ensemble-averaged, their associated distribution functions, and possible subpopulations. Moreover at the single cell level, the interplay of regulated genomic information and proteomic variabilities can be investigated and attributed to functional peculiarities. These requirements necessitate the development of novel and ultrasensitive methods and instruments for single molecule detection, microscopy and spectroscopy for analysis without the need of amplification and preconcentration. In this chapter, we present three methodological applications that demonstrate how quantitative informations can be accessed that are representative for cellular processes or single cell analysis like gene expression regulation, intracellular protein translocation dynamics, and single cell protein fingerprinting. First, the interaction kinetics of transcriptionally regulated DNA-protein interaction can be quantitatively investigated with single molecule force spectroscopy allowing a molecular affinity ranking. Second, intracellular protein dynamics for a transcription regulator migrating form the nucleus to the cytoplasm can be quantitatively monitored by photoactivable GFP and two-photon laser scanning microscopy. And third, a microfluidic-based method for label-free single cell proteomics and fingerprinting and first label-free single cell electropherograms are presented which include the manipulation and steering of single cells in a microfluidic device.
Erscheinungsjahr
2007
Buchtitel
Subcellular Proteomics
Band
43
Seite(n)
301-321
ISBN
978-1-4020-5942-1
Page URI
https://pub.uni-bielefeld.de/record/1946105

Zitieren

Martini J, Hellmich W, Greif D, et al. Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis. In: Faupel M, Bertrand E, eds. Subcellular Proteomics. Vol 43. Heidelberg: Springer; 2007: 301-321.
Martini, J., Hellmich, W., Greif, D., Becker, A., Merkle, T., Ros, R., Ros, A., et al. (2007). Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis. In M. Faupel & E. Bertrand (Eds.), Subcellular Proteomics (Vol. 43, pp. 301-321). Heidelberg: Springer.
Martini, Joerg, Hellmich, Wibke, Greif, Dominik, Becker, Anke, Merkle, Thomas, Ros, Robert, Ros, Alexandra, Tönsing, Katja, and Anselmetti, Dario. 2007. “Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis”. In Subcellular Proteomics, ed. Michel Faupel and Eric Bertrand, 43:301-321. Heidelberg: Springer.
Martini, J., Hellmich, W., Greif, D., Becker, A., Merkle, T., Ros, R., Ros, A., Tönsing, K., and Anselmetti, D. (2007). “Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis” in Subcellular Proteomics, Faupel, M., and Bertrand, E. eds., vol. 43, (Heidelberg: Springer), 301-321.
Martini, J., et al., 2007. Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis. In M. Faupel & E. Bertrand, eds. Subcellular Proteomics. no.43 Heidelberg: Springer, pp. 301-321.
J. Martini, et al., “Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis”, Subcellular Proteomics, M. Faupel and E. Bertrand, eds., vol. 43, Heidelberg: Springer, 2007, pp.301-321.
Martini, J., Hellmich, W., Greif, D., Becker, A., Merkle, T., Ros, R., Ros, A., Tönsing, K., Anselmetti, D.: Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis. In: Faupel, M. and Bertrand, E. (eds.) Subcellular Proteomics. 43, p. 301-321. Springer, Heidelberg (2007).
Martini, Joerg, Hellmich, Wibke, Greif, Dominik, Becker, Anke, Merkle, Thomas, Ros, Robert, Ros, Alexandra, Tönsing, Katja, and Anselmetti, Dario. “Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis”. Subcellular Proteomics. Ed. Michel Faupel and Eric Bertrand. Heidelberg: Springer, 2007.Vol. 43. 301-321.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Supremacy of modern morphometry in typing renal oncocytoma and malignant look-alikes.
Erlmeier F, Feuchtinger A, Borgmann D, Rudelius M, Autenrieth M, Walch AK, Weirich G., Histochem Cell Biol 144(2), 2015
PMID: 25929744
A system for analyzing the event timing profile of single cells by using a model of neurite maturation in PC12D cells.
Yamada S, Hakamada K, Munekata T, Takano K, Fujita S, Miyake M, Miyake J., Biosens Bioelectron 24(5), 2009
PMID: 18782661
Concomitant detection of CYP1A1 enzymatic activity and CYP1A1 protein in individual cells of a human urothelial cell line using a bilayer microfluidic device.
Schumann CA, Dörrenhaus A, Franzke J, Lampen P, Dittrich PS, Manz A, Roos PH., Anal Bioanal Chem 392(6), 2008
PMID: 18797850
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 17953400
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche