Optimal Stopping under Ambiguity
Riedel F (2007) Working Papers. Institute of Mathematical Economics; 390.
Bielefeld: Universität Bielefeld.
Diskussionspapier
| Veröffentlicht | Englisch
Download
Autor*in
Abstract / Bemerkung
We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first steps of a martingale theory for multiple priors. We define minimax (super)martingales, provide a Doob-Meyer decomposition, and characterize minimax martingales. This allows us to extend the standard backward induction procedure to ambiguous, time-consistent preferences. The value function is the smallest process that is a minimax supermartingale and dominates the payoff process. It is optimal to stop when the current payoff is equal to the value function. Moving on, we study the infinite horizon case. We show that the value process satisfies the same backward recursion (Bellman equation) as in the finite horizon case. The finite horizon solutions converge to the infinite horizon solution. Finally, we characterize completely the set of time-consistent multiple priors in the binomial tree. We solve two classes of examples: the so-called independent and indistinguishable case (the parking problem) and the case of American Options (Cox-Ross-Rubinstein model).
Stichworte
Optimal stopping;
Uncertainty aversion;
Ambiguity
Erscheinungsjahr
2007
Serientitel
Working Papers. Institute of Mathematical Economics
Band
390
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/1944648
Zitieren
Riedel F. Optimal Stopping under Ambiguity. Working Papers. Institute of Mathematical Economics. Vol 390. Bielefeld: Universität Bielefeld; 2007.
Riedel, F. (2007). Optimal Stopping under Ambiguity (Working Papers. Institute of Mathematical Economics, 390). Bielefeld: Universität Bielefeld.
Riedel, Frank. 2007. Optimal Stopping under Ambiguity. Vol. 390. Working Papers. Institute of Mathematical Economics. Bielefeld: Universität Bielefeld.
Riedel, F. (2007). Optimal Stopping under Ambiguity. Working Papers. Institute of Mathematical Economics, 390, Bielefeld: Universität Bielefeld.
Riedel, F., 2007. Optimal Stopping under Ambiguity, Working Papers. Institute of Mathematical Economics, no.390, Bielefeld: Universität Bielefeld.
F. Riedel, Optimal Stopping under Ambiguity, Working Papers. Institute of Mathematical Economics, vol. 390, Bielefeld: Universität Bielefeld, 2007.
Riedel, F.: Optimal Stopping under Ambiguity. Working Papers. Institute of Mathematical Economics, 390. Universität Bielefeld, Bielefeld (2007).
Riedel, Frank. Optimal Stopping under Ambiguity. Bielefeld: Universität Bielefeld, 2007. Working Papers. Institute of Mathematical Economics. 390.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:13Z
MD5 Prüfsumme
c1ee7c53d8fdd6923c4987a1668730b9