Efficient Deep Processing of Japanese

Bender EM, Siegel M (2002)
In: Proceedings of the 19th International Conference on Computational Linguistics.

Konferenzbeitrag | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bender, Emily M.; Siegel, MelanieUniBi
Abstract / Bemerkung
We present a broad coverage Japanese grammar written in the HPSG formalismwith MRS semantics. The grammar is created for use in real world applications,such that robustness and performance issues play an important role. It isconnected to a POS tagging and word segmentation tool. This grammar is beingdeveloped in a multilingual context, requiring MRS structures that are easilycomparable across languages.
Erscheinungsjahr
2002
Titel des Konferenzbandes
Proceedings of the 19th International Conference on Computational Linguistics
Page URI
https://pub.uni-bielefeld.de/record/1941963

Zitieren

Bender EM, Siegel M. Efficient Deep Processing of Japanese. In: Proceedings of the 19th International Conference on Computational Linguistics. 2002.
Bender, E. M., & Siegel, M. (2002). Efficient Deep Processing of Japanese. Proceedings of the 19th International Conference on Computational Linguistics
Bender, E. M., and Siegel, M. (2002). “Efficient Deep Processing of Japanese” in Proceedings of the 19th International Conference on Computational Linguistics.
Bender, E.M., & Siegel, M., 2002. Efficient Deep Processing of Japanese. In Proceedings of the 19th International Conference on Computational Linguistics.
E.M. Bender and M. Siegel, “Efficient Deep Processing of Japanese”, Proceedings of the 19th International Conference on Computational Linguistics, 2002.
Bender, E.M., Siegel, M.: Efficient Deep Processing of Japanese. Proceedings of the 19th International Conference on Computational Linguistics. (2002).
Bender, Emily M., and Siegel, Melanie. “Efficient Deep Processing of Japanese”. Proceedings of the 19th International Conference on Computational Linguistics. 2002.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: cs/0207005

Suchen in

Google Scholar