Local Visual Homing by Matched-Filter Descent in Image Distances
Möller R, Vardy A (2006)
Biological Cybernetics 95(5): 413-430.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Möller, RalfUniBi ;
Vardy, Andrew
Einrichtung
Abstract / Bemerkung
In natural images, the distance measure between two images taken at different locations rises smoothly with increasing distance between the locations. This fact can be exploited for local visual homing where the task is to reach a goal location that is characterized by a snapshot image: descending in the image distance will lead the agent to the goal location. To compute an estimate of the spatial gradient in the distance measure, its value must be sampled at three noncollinear points. An animal or robot would have to insert exploratory movements into its home trajectory to collect these samples. Here we suggest a method based on the matched-filter concept that allows one to estimate the gradient without exploratory movements. Two matched filters - optical flow fields resulting from translatory movements in the horizontal plane - are used to predict two images in perpendicular directions from the current location. We investigate the relation to differential flow methods applied to the local homing problem and show that the matched-filter approach produces reliable homing behavior on image databases. Two alternative methods that only require a single matched filter are suggested. The matched-filter concept is also applied to derive a home-vector equation for a Fourier-based parameter method.
Erscheinungsjahr
2006
Zeitschriftentitel
Biological Cybernetics
Band
95
Ausgabe
5
Seite(n)
413-430
ISSN
0340-1200
eISSN
1432-0770
Page URI
https://pub.uni-bielefeld.de/record/1937014
Zitieren
Möller R, Vardy A. Local Visual Homing by Matched-Filter Descent in Image Distances. Biological Cybernetics. 2006;95(5):413-430.
Möller, R., & Vardy, A. (2006). Local Visual Homing by Matched-Filter Descent in Image Distances. Biological Cybernetics, 95(5), 413-430. https://doi.org/10.1007/s00422-006-0095-3
Möller, Ralf, and Vardy, Andrew. 2006. “Local Visual Homing by Matched-Filter Descent in Image Distances”. Biological Cybernetics 95 (5): 413-430.
Möller, R., and Vardy, A. (2006). Local Visual Homing by Matched-Filter Descent in Image Distances. Biological Cybernetics 95, 413-430.
Möller, R., & Vardy, A., 2006. Local Visual Homing by Matched-Filter Descent in Image Distances. Biological Cybernetics, 95(5), p 413-430.
R. Möller and A. Vardy, “Local Visual Homing by Matched-Filter Descent in Image Distances”, Biological Cybernetics, vol. 95, 2006, pp. 413-430.
Möller, R., Vardy, A.: Local Visual Homing by Matched-Filter Descent in Image Distances. Biological Cybernetics. 95, 413-430 (2006).
Möller, Ralf, and Vardy, Andrew. “Local Visual Homing by Matched-Filter Descent in Image Distances”. Biological Cybernetics 95.5 (2006): 413-430.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
23 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Place recognition from distant landmarks: human performance and maximum likelihood model.
Mallot HA, Lancier S., Biol Cybern 112(4), 2018
PMID: 29480375
Mallot HA, Lancier S., Biol Cybern 112(4), 2018
PMID: 29480375
The problem of home choice in skyline-based homing.
Müller MM, Bertrand OJN, Differt D, Egelhaaf M., PLoS One 13(3), 2018
PMID: 29522546
Müller MM, Bertrand OJN, Differt D, Egelhaaf M., PLoS One 13(3), 2018
PMID: 29522546
Fractal dimension and the navigational information provided by natural scenes.
Shamsyeh Zahedi M, Zeil J., PLoS One 13(5), 2018
PMID: 29734381
Shamsyeh Zahedi M, Zeil J., PLoS One 13(5), 2018
PMID: 29734381
Finding Home: Landmark Ambiguity in Human Navigation.
Jetzschke S, Ernst MO, Froehlich J, Boeddeker N., Front Behav Neurosci 11(), 2017
PMID: 28769773
Jetzschke S, Ernst MO, Froehlich J, Boeddeker N., Front Behav Neurosci 11(), 2017
PMID: 28769773
Does Spatial Navigation Have a Blind-Spot? Visiocentrism Is Not Enough to Explain the Navigational Behavior Comprehensively.
Hohol M, Baran B, Krzyżowski M, Francikowski J., Front Behav Neurosci 11(), 2017
PMID: 28867995
Hohol M, Baran B, Krzyżowski M, Francikowski J., Front Behav Neurosci 11(), 2017
PMID: 28867995
Landmark-Based Homing Navigation Using Omnidirectional Depth Information.
Lee C, Yu SE, Kim D., Sensors (Basel) 17(8), 2017
PMID: 28829387
Lee C, Yu SE, Kim D., Sensors (Basel) 17(8), 2017
PMID: 28829387
Ant Homing Ability Is Not Diminished When Traveling Backwards.
Ardin PB, Mangan M, Webb B., Front Behav Neurosci 10(), 2016
PMID: 27147991
Ardin PB, Mangan M, Webb B., Front Behav Neurosci 10(), 2016
PMID: 27147991
Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.
Gaffin DD, Brayfield BP., PLoS One 11(4), 2016
PMID: 27119720
Gaffin DD, Brayfield BP., PLoS One 11(4), 2016
PMID: 27119720
A novel robot visual homing method based on SIFT features.
Zhu Q, Liu C, Cai C., Sensors (Basel) 15(10), 2015
PMID: 26473880
Zhu Q, Liu C, Cai C., Sensors (Basel) 15(10), 2015
PMID: 26473880
Visual scene perception in navigating wood ants.
Lent DD, Graham P, Collett TS., Curr Biol 23(8), 2013
PMID: 23583550
Lent DD, Graham P, Collett TS., Curr Biol 23(8), 2013
PMID: 23583550
Modelling human visual navigation using multi-view scene reconstruction.
Pickup LC, Fitzgibbon AW, Glennerster A., Biol Cybern 107(4), 2013
PMID: 23778937
Pickup LC, Fitzgibbon AW, Glennerster A., Biol Cybern 107(4), 2013
PMID: 23778937
A model of ant route navigation driven by scene familiarity.
Baddeley B, Graham P, Husbands P, Philippides A., PLoS Comput Biol 8(1), 2012
PMID: 22241975
Baddeley B, Graham P, Husbands P, Philippides A., PLoS Comput Biol 8(1), 2012
PMID: 22241975
A neural network based holistic model of ant route navigation.
Baddeley B, Graham P, Husbands P, Philippides A., BMC Neurosci 13(suppl 1), 2012
PMID: PMC3403484
Baddeley B, Graham P, Husbands P, Philippides A., BMC Neurosci 13(suppl 1), 2012
PMID: PMC3403484
The role of mental rotations in primate-inspired robot navigation.
Arkin RC., Cogn Process 13 Suppl 1(), 2012
PMID: 22806658
Arkin RC., Cogn Process 13 Suppl 1(), 2012
PMID: 22806658
Static and dynamic snapshots for goal localization in insects?
Dittmar L., Commun Integr Biol 4(1), 2011
PMID: 21509170
Dittmar L., Commun Integr Biol 4(1), 2011
PMID: 21509170
No need for a cognitive map: decentralized memory for insect navigation.
Cruse H, Wehner R., PLoS Comput Biol 7(3), 2011
PMID: 21445233
Cruse H, Wehner R., PLoS Comput Biol 7(3), 2011
PMID: 21445233
Landmarks or panoramas: what do navigating ants attend to for guidance?
Wystrach A, Beugnon G, Cheng K., Front Zool 8(), 2011
PMID: 21871114
Wystrach A, Beugnon G, Cheng K., Front Zool 8(), 2011
PMID: 21871114
Simulated visual homing in desert ant natural environments: efficiency of skyline cues.
Basten K, Mallot HA., Biol Cybern 102(5), 2010
PMID: 20300942
Basten K, Mallot HA., Biol Cybern 102(5), 2010
PMID: 20300942
Animal cognition: multi-modal interactions in ant learning.
Graham P, Philippides A, Baddeley B., Curr Biol 20(15), 2010
PMID: 20692612
Graham P, Philippides A, Baddeley B., Curr Biol 20(15), 2010
PMID: 20692612
Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features.
Lent DD, Graham P, Collett TS., Proc Natl Acad Sci U S A 107(37), 2010
PMID: 20805481
Lent DD, Graham P, Collett TS., Proc Natl Acad Sci U S A 107(37), 2010
PMID: 20805481
Which portion of the natural panorama is used for view-based navigation in the Australian desert ant?
Graham P, Cheng K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(7), 2009
PMID: 19404647
Graham P, Cheng K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(7), 2009
PMID: 19404647
25 References
Daten bereitgestellt von Europe PubMed Central.
JL, Int J Comput Vis 12(), 1994
E, 1981
SS, ACM Comput Surv 27(), 1995
BA, J Comp Physiol A 151(), 1983
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
Wide-field, motion-sensitive neurons and matched filters for optic flow fields.
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
MO, Robot Auton Syst, special issue: Biomimetic Robots 30(), 2000
MO, Auton Robots 5(), 1998
MO, Biol Cybern 79(), 1998
A, Image Vis Comput 18(), 2000
B, 2002
Neuronal matched filters for optic flow processing in flying insects.
Krapp HG., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605643
Krapp HG., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605643
D, Robot Auton Syst, special issue: Biomimetic Robots 30(), 2000
E, Robot Auton Syst 47(), 2004
Insect visual homing strategies in a robot with analog processing.
Moller R., Biol Cybern 83(3), 2000
PMID: 11007298
Moller R., Biol Cybern 83(3), 2000
PMID: 11007298
Do insects use templates or parameters for landmark navigation?
Moller R., J. Theor. Biol. 210(1), 2001
PMID: 11343429
Moller R., J. Theor. Biol. 210(1), 2001
PMID: 11343429
R, 2002
AUTHOR UNKNOWN, 0
W, Robot Auton Syst 54(), 2006
A, Connect Sci 17(), 2005
R, J Comp Physiol A 161(), 1987
R, Experientia 35(), 1979
J, J Opt Soc Am A 20(), 2003
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 17021827
PubMed | Europe PMC
Suchen in