Identification of Discriminative Features in the EEG
Meinicke P, Hermann T, Bekel H, Müller HM, Weiss S, Ritter H (2004)
Intelligent Data Analysis 8(1): 97-107.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Meinicke_et_al.pdf
Autor*in
Meinicke, Peter;
Hermann, ThomasUniBi ;
Bekel, Holger;
Müller, Horst M.UniBi ;
Weiss, SabineUniBi ;
Ritter, HelgeUniBi
Einrichtung
Abstract / Bemerkung
An important step for the correlation of EEG signals with cognitive processes is the identification of discriminative features in the EEG signal. In this paper we utilize independent component analysis (ICA) for feature extraction and selection. Our specific ICA technique is based on a nonparametric source representation which in particular allows for modelling of multimodal feature distributions as generally required for the analysis of mixed data from different experiment conditions. To demonstrate the potential of the resulting ICA feature selection scheme we report results from an analysis of psycholinguistic experiments on the discrimination of speech perception from perception of so-called pseudo speech signals and demonstrate how the obtained ICA features can be further analyzed with the technique of sonification. Our results correlate well with results from coherence analysis and strongly indicate that these new methods are well suited for uncovering cognitively relevant features in EEG signals.
Erscheinungsjahr
2004
Zeitschriftentitel
Intelligent Data Analysis
Band
8
Ausgabe
1
Seite(n)
97-107
ISSN
1088-467X
Page URI
https://pub.uni-bielefeld.de/record/1917653
Zitieren
Meinicke P, Hermann T, Bekel H, Müller HM, Weiss S, Ritter H. Identification of Discriminative Features in the EEG. Intelligent Data Analysis. 2004;8(1):97-107.
Meinicke, P., Hermann, T., Bekel, H., Müller, H. M., Weiss, S., & Ritter, H. (2004). Identification of Discriminative Features in the EEG. Intelligent Data Analysis, 8(1), 97-107.
Meinicke, Peter, Hermann, Thomas, Bekel, Holger, Müller, Horst M., Weiss, Sabine, and Ritter, Helge. 2004. “Identification of Discriminative Features in the EEG”. Intelligent Data Analysis 8 (1): 97-107.
Meinicke, P., Hermann, T., Bekel, H., Müller, H. M., Weiss, S., and Ritter, H. (2004). Identification of Discriminative Features in the EEG. Intelligent Data Analysis 8, 97-107.
Meinicke, P., et al., 2004. Identification of Discriminative Features in the EEG. Intelligent Data Analysis, 8(1), p 97-107.
P. Meinicke, et al., “Identification of Discriminative Features in the EEG”, Intelligent Data Analysis, vol. 8, 2004, pp. 97-107.
Meinicke, P., Hermann, T., Bekel, H., Müller, H.M., Weiss, S., Ritter, H.: Identification of Discriminative Features in the EEG. Intelligent Data Analysis. 8, 97-107 (2004).
Meinicke, Peter, Hermann, Thomas, Bekel, Holger, Müller, Horst M., Weiss, Sabine, and Ritter, Helge. “Identification of Discriminative Features in the EEG”. Intelligent Data Analysis 8.1 (2004): 97-107.
Volltext(e)
Name
Meinicke_et_al.pdf
Access Level
Closed Access
Zuletzt Hochgeladen
2019-09-06T08:57:11Z
MD5 Prüfsumme
0b05fb9d4c0ddef64d905d0d80bfa5f2
Link(s) zu Volltext(en)
Access Level
Closed Access