Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.

Peters-Wendisch P, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ (1998)
Microbiology-Sgm 144(4): 915-927.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Peters-Wendisch, PetraUniBi; Kreutzer, C.; Kalinowski, JörnUniBi; Pátek, M.; Sahm, H.; Eikmanns, B.J.
Abstract / Bemerkung
In addition to phosphoenolpyruvate carboxylase (PEPCx), pyruvate carboxylase (PCx) has recently been found as an anaplerotic enzyme in the amino-acid-producing bacterium Corynebacterium glutamicum, Using oligonucleotides designed according to conserved regions of PCx amino acid sequences from other organisms, a 200 bp fragment central to the C. glutamicum PCx gene (pyc) was amplified from genomic DNA by PCR, This fragment was then used to identify and to subclone the entire C. glutamicum pyc gene, The cloned pyc gene was expressed in C. glutamicum, as cells harbouring the gene on plasmid showed four- to fivefold higher specific PCx activities when compared to the wild-type (WT). Moreover, increased PCx protein Bevels in the pyc-plasmid-carrying strain were readily detected after SDS-PAGE of cell-free extracts. DNA sequence analysis of the pyc gene, including its 5' and 3' flanking regions, and N-terminal sequencing of the pyc gene product predicts a PCx polypeptide of 1140 amino acids with an M-r of 123 070. The amino acid sequence of this polypeptide shows between 62% and 45% identity when compared to PCx enzymes from other organisms. Transcriptional analyses revealed that the pyc gene from C. glutamicum is monocistronic (3.5 kb mRNA) and that its transcription is initiated at an A residue 55 bp upstream of the translational start. Inactivation of the chromosomal pyc gene in C. glutamicum WT led to the absence of PCx activity and to negligible growth on lactate, indicating that PCx is essential for growth on this carbon source. Inactivation of both the PCx gene and the PEPCx gene in C. glutamicum led additionally to the inability to grow on glucose, indicating that no further anaplerotic enzymes for growth on carbohydrates exist in this organism.
Stichworte
Corynebacterium glutamicum; pyc gene; anaplerotic; phosphoenolpyruvate carboxylase; reactions; pyruvate carboxylase
Erscheinungsjahr
1998
Zeitschriftentitel
Microbiology-Sgm
Band
144
Ausgabe
4
Seite(n)
915-927
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/1904807

Zitieren

Peters-Wendisch P, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ. Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology-Sgm. 1998;144(4):915-927.
Peters-Wendisch, P., Kreutzer, C., Kalinowski, J., Pátek, M., Sahm, H., & Eikmanns, B. J. (1998). Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology-Sgm, 144(4), 915-927. https://doi.org/10.1099/00221287-144-4-915
Peters-Wendisch, Petra, Kreutzer, C., Kalinowski, Jörn, Pátek, M., Sahm, H., and Eikmanns, B.J. 1998. “Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.”. Microbiology-Sgm 144 (4): 915-927.
Peters-Wendisch, P., Kreutzer, C., Kalinowski, J., Pátek, M., Sahm, H., and Eikmanns, B. J. (1998). Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology-Sgm 144, 915-927.
Peters-Wendisch, P., et al., 1998. Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology-Sgm, 144(4), p 915-927.
P. Peters-Wendisch, et al., “Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.”, Microbiology-Sgm, vol. 144, 1998, pp. 915-927.
Peters-Wendisch, P., Kreutzer, C., Kalinowski, J., Pátek, M., Sahm, H., Eikmanns, B.J.: Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology-Sgm. 144, 915-927 (1998).
Peters-Wendisch, Petra, Kreutzer, C., Kalinowski, Jörn, Pátek, M., Sahm, H., and Eikmanns, B.J. “Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.”. Microbiology-Sgm 144.4 (1998): 915-927.

82 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biotin-independent strains of Escherichia coli for enhanced streptavidin production.
Jeschek M, Bahls MO, Schneider V, Marlière P, Ward TR, Panke S., Metab Eng 40(), 2017
PMID: 28062280
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum.
Nagano-Shoji M, Hamamoto Y, Mizuno Y, Yamada A, Kikuchi M, Shirouzu M, Umehara T, Yoshida M, Nishiyama M, Kosono S., Mol Microbiol 104(4), 2017
PMID: 28256782
In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.
Ikeda M, Nagashima T, Nakamura E, Kato R, Ohshita M, Hayashi M, Takeno S., Appl Environ Microbiol 83(19), 2017
PMID: 28754705
Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.
Lazar N, Fay A, Nandakumar M, Boyle KE, Xavier J, Rhee K, Glickman MS., Mol Microbiol 106(6), 2017
PMID: 29052269
CDC5L drives FAH expression to promote metabolic reprogramming in melanoma.
Gu Z, Zhang H, Li Y, Shen S, Yin X, Zhang W, Cheng R, Zhang Y, Zhang X, Chen H, Huang B, Cao Y., Oncotarget 8(69), 2017
PMID: 29371990
Efficient production of α-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy.
Li Y, Sun L, Feng J, Wu R, Xu Q, Zhang C, Chen N, Xie X., Bioprocess Biosyst Eng 39(6), 2016
PMID: 26946492
Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming.
Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, Shimizu K, Tang YJ, Bao FS., PLoS Comput Biol 12(4), 2016
PMID: 27092947
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
Lubitz D, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27717325
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J., Metab Eng 32(), 2015
PMID: 26453945
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.
Khuat HB, Kaboré AK, Olmos E, Fick M, Boudrant J, Goergen JL, Delaunay S, Guedon E., Biosci Biotechnol Biochem 78(2), 2014
PMID: 25036691
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour Technol 145(), 2013
PMID: 23562176
Metabolic engineering: past and future.
Woolston BM, Edgar S, Stephanopoulos G., Annu Rev Chem Biomol Eng 4(), 2013
PMID: 23540289
Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
Blombach B, Buchholz J, Busche T, Kalinowski J, Takors R., J Biotechnol 168(4), 2013
PMID: 24140290
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
Litsanov B, Kabus A, Brocker M, Bott M., Microb Biotechnol 5(1), 2012
PMID: 22018023
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Engineering Corynebacterium glutamicum for the production of pyruvate.
Wieschalka S, Blombach B, Eikmanns BJ., Appl Microbiol Biotechnol 94(2), 2012
PMID: 22228312
Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.
Schneider J, Peters-Wendisch P, Stansen KC, Götker S, Maximow S, Krämer R, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22243621
Sialic acid utilization by the soil bacterium Corynebacterium glutamicum.
Gruteser N, Marin K, Krämer R, Thomas GH., FEMS Microbiol Lett 336(2), 2012
PMID: 22924979
Biotechnological production of polyamines by bacteria: recent achievements and future perspectives.
Schneider J, Wendisch VF., Appl Microbiol Biotechnol 91(1), 2011
PMID: 21552989
Unravelling the C3/C4 carbon metabolism in Ralstonia eutropha H16.
Bruland N, Voss I, Brämer C, Steinbüchel A., J Appl Microbiol 109(1), 2010
PMID: 20002867
Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
Holátko J, Elisáková V, Prouza M, Sobotka M, Nesvera J, Pátek M., J Biotechnol 139(3), 2009
PMID: 19121344
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A., Microbiology 155(pt 4), 2009
PMID: 19332837
Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.
Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M., J Biosci Bioeng 106(1), 2008
PMID: 18691531
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF., J Bacteriol 190(19), 2008
PMID: 18658264
Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum.
Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T., Appl Environ Microbiol 73(4), 2007
PMID: 17158630
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions.
Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H., J Mol Microbiol Biotechnol 7(4), 2004
PMID: 15383716
Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum.
Delaunay S, Daran-Lapujade P, Engasser JM, Goergen JL., J Ind Microbiol Biotechnol 31(4), 2004
PMID: 15133716
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch Microbiol 182(5), 2004
PMID: 15375646
Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum.
Venkova-Canova T, Pátek M, Nesvera J., J Bacteriol 185(8), 2003
PMID: 12670963
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A., J Biotechnol 104(1-3), 2003
PMID: 12948626
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J Biotechnol 104(1-3), 2003
PMID: 12948633
Promoters of Corynebacterium glutamicum.
Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J Biotechnol 104(1-3), 2003
PMID: 12948648
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Hüser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Pühler A, Wiegräbe I, Tauch A., J Biotechnol 106(2-3), 2003
PMID: 14651867
IGF-I promotes a shift in metabolic flux in vascular smooth muscle cells.
Hall JL, Gibbons GH, Chatham JC., Am J Physiol Endocrinol Metab 283(3), 2002
PMID: 12169439
Cloning, sequencing, and expression of the pyruvate carboxylase gene in Lactococcus lactis subsp. lactis C2.
Wang H, O'Sullivan DJ, Baldwin KA, McKay LL., Appl Environ Microbiol 66(3), 2000
PMID: 10698798
Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism.
Gourdon P, Baucher MF, Lindley ND, Guyonvarch A., Appl Environ Microbiol 66(7), 2000
PMID: 10877795
Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
Sahm H, Eggeling L, de Graaf AA., Biol Chem 381(9-10), 2000
PMID: 11076021
Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation.
Delaunay S, Uy D, Baucher MF, Engasser JM, Guyonvarch A, Goergen JL., Metab Eng 1(4), 1999
PMID: 10937826
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9579065
PubMed | Europe PMC

Suchen in

Google Scholar