RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism

Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ (2011)
J Biotechnol 154(2-3): 126-139.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Expression profiling of Corynebacterium glutamicum in comparison to a derivative deficient in the transcriptional regulator AtlR (previously known as SucR or MtlR) revealed eight genes showing more than 4-fold higher mRNA levels in the mutant. Four of these genes are located in the direct vicinity of the atlR gene, i.e., xylB, rbtT, mtlD, and sixA, annotated as encoding xylulokinase, the ribitol transporter, mannitol 2-dehydrogenase, and phosphohistidine phosphatase, respectively. Transcriptional analysis indicated that atlR and the four genes are organized as atlR-xylB and rbtT-mtlD-sixA operons. Growth experiments with C. glutamicum and C. glutamicum ΔatlR, ΔxylB, ΔrbtT, ΔmtlD, and ΔsixA derivatives with sugar alcohols revealed that (i) wild-type C. glutamicum grows on D-arabitol but not on other sugar alcohols, (ii) growth in the presence of D-arabitol allows subsequent growth on D-mannitol, (iii) D-arabitol is cometabolized with glucose and preferentially utilized over D-mannitol, (iv) RbtT and XylB are involved in D-arabitol but not in D-mannitol metabolism, (v) MtlD is required for D-arabitol and D-mannitol metabolism, and (vi) SixA is not required for growth on any of the substrates tested. Furthermore, we show that MtlD confers D-arabitol and D-mannitol dehydrogenase activities, that the levels of these and also xylulokinase activities are generally high in the C. glutamicum ΔatlR mutant, whereas in the parental strain, they were high when cells were grown in the presence of D-arabitol and very low when cells were grown in its absence. Our results show that the XylB, RbtT, and MtlD proteins allow the growth of C. glutamicum on D-arabitol and that D-arabitol metabolism is subject to arabitol-dependent derepression by AtlR.
Erscheinungsjahr
Zeitschriftentitel
J Biotechnol
Band
154
Ausgabe
2-3
Seite(n)
126-139
ISSN
PUB-ID

Zitieren

Auchter M, Cramer A, Hüser A, et al. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol. 2011;154(2-3):126-139.
Auchter, M., Cramer, A., Hüser, A., Rückert, C., Emer, D., Schwarz, P., Arndt, A., et al. (2011). RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol, 154(2-3), 126-139. doi:10.1016/j.jbiotec.2010.07.001
Auchter, M., Cramer, A., Hüser, A., Rückert, C., Emer, D., Schwarz, P., Arndt, A., Lange, C., Kalinowski, J., Wendisch, V. F., et al. (2011). RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 154, 126-139.
Auchter, M., et al., 2011. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol, 154(2-3), p 126-139.
M. Auchter, et al., “RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism”, J Biotechnol, vol. 154, 2011, pp. 126-139.
Auchter, M., Cramer, A., Hüser, A., Rückert, C., Emer, D., Schwarz, P., Arndt, A., Lange, C., Kalinowski, J., Wendisch, V.F., Eikmanns, B.J.: RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol. 154, 126-139 (2011).
Auchter, M., Cramer, A., Hüser, A., Rückert, Christian, Emer, D., Schwarz, P., Arndt, A., Lange, C., Kalinowski, Jörn, Wendisch, Volker F., and Eikmanns, B. J. “RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism”. J Biotechnol 154.2-3 (2011): 126-139.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
Radek A, Müller MF, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, Noack S., J Biotechnol 231(), 2016
PMID: 27297548
Stimulus analysis of BetP activation under in vivo conditions.
Maximov S, Ott V, Belkoura L, Krämer R., Biochim Biophys Acta 1838(5), 2014
PMID: 24384063
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440
Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C., Biotechnol J 8(5), 2013
PMID: 23447448
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Mühlroth A, Marienhagen J, Bott M., Appl Environ Microbiol 79(22), 2013
PMID: 24014532

77 References

Daten bereitgestellt von Europe PubMed Central.

Taxonomical studies on glutamic acid-producing bacteria
Abe S, Takayama K, Kinoshita S., 1967
Regulation of carbon metabolism in
Arndt A, Eikmanns BJ., 2008
Ethanol catabolism in Corynebacterium glutamicum.
Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 15(4), 2007
PMID: 17693703
RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
Auchter M, Cramer A, Huser A, Ruckert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ., J. Biotechnol. 154(2-3), 2010
PMID: 20620178
Control of adhA and sucR expression by the SucR regulator in Corynebacterium glutamicum.
Auchter M, Laslo T, Fleischer C, Schiller L, Arndt A, Gaigalat L, Kalinowski J, Eikmanns BJ., J. Biotechnol. 152(3), 2011
PMID: 21320555
A rapid alkaline extraction method for the isolation of plasmid DNA.
Birnboim HC., Meth. Enzymol. 100(), 1983
PMID: 6353143

AUTHOR UNKNOWN, 0
Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17333167
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli.
Brunker P, Altenbuchner J, Kulbe KD, Mattes R., Biochim. Biophys. Acta 1351(1-2), 1997
PMID: 9116029
D-Arabitol catabolic pathway in Klebsiella aerogenes.
Charnetzky WT, Mortlock RP., J. Bacteriol. 119(1), 1974
PMID: 4366026
Batch kinetics of during growth on various carbon substrates: use of substrate mixtures to localise metabolic bottlenecks
Cocaign M, Monnet C, Lindley ND., 1993
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Marechal P, Guyonvarch A., Microbiology (Reading, Engl.) 155(Pt 4), 2009
PMID: 19332837
Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of
Dominguez H, Cocaign-Bousquet M, Lindley ND., 1993
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
High efficiency transformation of E. coli by high voltage electroporation.
Dower WJ, Miller JF, Ragsdale CW., Nucleic Acids Res. 16(13), 1988
PMID: 3041370
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae.
Eliasson A, Boles E, Johansson B, Osterberg M, Thevelein JM, Spencer-Martins I, Juhnke H, Hahn-Hagerdal B., Appl. Microbiol. Biotechnol. 53(4), 2000
PMID: 10803891
The mannitol repressor (MtlR) of Escherichia coli.
Figge RM, Ramseier TM, Saier MH Jr., J. Bacteriol. 176(3), 1994
PMID: 8300537
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae.
Heuel H, Shakeri-Garakani A, Turgut S, Lengeler JW., Microbiology (Reading, Engl.) 144 ( Pt 6)(), 1998
PMID: 9639934
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(4), 2004
PMID: 16179801
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J. Bacteriol. 188(2), 2006
PMID: 16385062
Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources.
Koch DJ, Ruckert C, Rey DA, Mix A, Puhler A, Kalinowski J., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204527
Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R.
Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H., Appl. Microbiol. Biotechnol. 76(6), 2007
PMID: 17646983
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl. Environ. Microbiol. 76(24), 2010
PMID: 20935122
Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
Krause FS, Henrich A, Blombach B, Kramer R, Eikmanns BJ, Seibold GM., Appl. Environ. Microbiol. 76(1), 2009
PMID: 19880641
Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum.
Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L., J. Bacteriol. 177(5), 1995
PMID: 7868586
Some features of mannitol metabolism in Rhizobium japonicum.
Kuykendall LD, Elkan GH., J. Gen. Microbiol. 98(1), 1977
PMID: 833572
The genus —nonmedical
Liebl W., 1991
Metabolism of some polyols by Rhizobium meliloti.
Martinez De Drets G, Arias A., J. Bacteriol. 103(1), 1970
PMID: 5423374
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022
Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
Okino S, Suda M, Fujikura K, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 78(3), 2008
PMID: 18188553
Characterization of the mannitol catabolic operon of Corynebacterium glutamicum.
Peng X, Okai N, Vertes AA, Inatomi K, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 91(5), 2011
PMID: 21655984
Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance.
Plemenitas A, Vaupotic T, Lenassi M, Kogej T, Gunde-Cimerman N., Stud. Mycol. 61(), 2008
PMID: 19287528
Polyol metabolism by Rhizobium trifolii.
Primrose SB, Ronson CW., J. Bacteriol. 141(3), 1980
PMID: 6767702
Molecular cloning: a laboratory manual
Sambrook J, Russel DW., 2001
Ribitol and D-arabitol catabolism in Escherichia coli.
Scangos GA, Reiner AM., J. Bacteriol. 134(2), 1978
PMID: 350825
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Engineering Corynebacterium glutamicum for isobutanol production.
Smith KM, Cho KM, Liao JC., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20376637
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Systems biology for industrial strains and fermentation processes--example: amino acids.
Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K., J. Biotechnol. 129(2), 2007
PMID: 17367886
The mannitol operon repressor MtlR belongs to a new class of transcription regulators in bacteria.
Tan K, Clancy S, Borovilos M, Zhou M, Horer S, Moy S, Volkart LL, Sassoon J, Baumann U, Joachimiak A., J. Biol. Chem. 284(52), 2009
PMID: 19840941
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Regulation of D-xylose and D-arabitol catabolism by Aerobacter aerogenes.
Wilson BL, Mortlock RP., J. Bacteriol. 113(3), 1973
PMID: 4734863
Rihitol and D-arabitol utilization by Aerobacter aerogenes.
WOOD WA, McDONOUGH MJ, JACOBS LB., J. Biol. Chem. 236(), 1961
PMID: 13786517

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22178972
PubMed | Europe PMC

Suchen in

Google Scholar