No Need for a Cognitive Map: Decentralized Memory for Insect Navigation

Cruse H, Wehner R (2011)
PLoS. Comp Biol 7(3): e1002009.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cruse, HolkUniBi; Wehner, Rüdiger
Abstract / Bemerkung
In many animals the ability to navigate over long distances is an important prerequisite for foraging. For example, it is widely accepted that desert ants and honey bees, but also mammals, use path integration for finding the way back to their home site. It is however a matter of a long standing debate whether animals in addition are able to acquire and use so called cognitive maps. Such a 'map', a global spatial representation of the foraging area, is generally assumed to allow the animal to find shortcuts between two sites although the direct connection has never been travelled before. Using the artificial neural network approach, here we develop an artificial memory system which is based on path integration and various landmark guidance mechanisms (a bank of individual and independent landmark-defined memory elements). Activation of the individual memory elements depends on a separate motivation network and an, in part, asymmetrical lateral inhibition network. The information concerning the absolute position of the agent is present, but resides in a separate memory that can only be used by the path integration subsystem to control the behaviour, but cannot be used for computational purposes with other memory elements of the system. Thus, in this simulation there is no neural basis of a cognitive map. Nevertheless, an agent controlled by this network is able to accomplish various navigational tasks known from ants and bees and often discussed as being dependent on a cognitive map. For example, map-like behaviour as observed in honey bees arises as an emergent property from a decentralized system. This behaviour thus can be explained without referring to the assumption that a cognitive map, a coherent representation of foraging space, must exist. We hypothesize that the proposed network essentially resides in the mushroom bodies of the insect brain.
Erscheinungsjahr
2011
Zeitschriftentitel
PLoS. Comp Biol
Band
7
Ausgabe
3
Art.-Nr.
e1002009
ISSN
1553-7358
eISSN
1553-7358
Page URI
https://pub.uni-bielefeld.de/record/1886087

Zitieren

Cruse H, Wehner R. No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS. Comp Biol. 2011;7(3): e1002009.
Cruse, H., & Wehner, R. (2011). No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS. Comp Biol, 7(3), e1002009. https://doi.org/10.1371/journal.pcbi.1002009
Cruse, Holk, and Wehner, Rüdiger. 2011. “No Need for a Cognitive Map: Decentralized Memory for Insect Navigation”. PLoS. Comp Biol 7 (3): e1002009.
Cruse, H., and Wehner, R. (2011). No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS. Comp Biol 7:e1002009.
Cruse, H., & Wehner, R., 2011. No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS. Comp Biol, 7(3): e1002009.
H. Cruse and R. Wehner, “No Need for a Cognitive Map: Decentralized Memory for Insect Navigation”, PLoS. Comp Biol, vol. 7, 2011, : e1002009.
Cruse, H., Wehner, R.: No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS. Comp Biol. 7, : e1002009 (2011).
Cruse, Holk, and Wehner, Rüdiger. “No Need for a Cognitive Map: Decentralized Memory for Insect Navigation”. PLoS. Comp Biol 7.3 (2011): e1002009.

41 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Central Complex as a Potential Substrate for Vector Based Navigation.
Le Moël F, Stone T, Lihoreau M, Wystrach A, Webb B., Front Psychol 10(), 2019
PMID: 31024377
A neural network model for familiarity and context learning during honeybee foraging flights.
Müller J, Nawrot M, Menzel R, Landgraf T., Biol Cybern 112(1-2), 2018
PMID: 28917001
Time-optimized path choice in the termite-hunting ant Megaponera analis.
Frank ET, Hönle PO, Linsenmair KE., J Exp Biol 221(pt 13), 2018
PMID: 29748213
Principles of Insect Path Integration.
Heinze S, Narendra A, Cheung A., Curr Biol 28(17), 2018
PMID: 30205054
Two distance memories in desert ants-Modes of interaction.
Wolf H, Wittlinger M, Pfeffer SE., PLoS One 13(10), 2018
PMID: 30304010
An adaptive cue combination model of human spatial reorientation.
Xu Y, Regier T, Newcombe NS., Cognition 163(), 2017
PMID: 28285237
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt D, Manoonpong P, Dasgupta S., Front Neurorobot 11(), 2017
PMID: 28446872
Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants.
Narendra A, Kamhi JF, Ogawa Y., Integr Comp Biol 57(5), 2017
PMID: 28985392
Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments.
Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B., PLoS Comput Biol 12(2), 2016
PMID: 26866692
Steering intermediate courses: desert ants combine information from various navigational routines.
Wehner R, Hoinville T, Cruse H, Cheng K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202(7), 2016
PMID: 27259296
Place recognition using batlike sonar.
Vanderelst D, Steckel J, Boen A, Peremans H, Holderied MW., Elife 5(), 2016
PMID: 27481189
Symmetry and order parameter dynamics of the human odometer.
Abdolvahab M, Carello C, Pinto C, Turvey MT, Frank TD., Biol Cybern 109(1), 2015
PMID: 25201495
The memory structure of navigation in honeybees.
Menzel R, Greggers U., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(6), 2015
PMID: 25707351
Satisfaction conditions in anticipatory mechanisms.
Miłkowski M., Biol Philos 30(5), 2015
PMID: 26339110
Where paths meet and cross: navigation by path integration in the desert ant and the honeybee.
Srinivasan MV., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(6), 2015
PMID: 25971358
Memory Effects on Movement Behavior in Animal Foraging.
Bracis C, Gurarie E, Van Moorter B, Goodwin RA., PLoS One 10(8), 2015
PMID: 26288228
Early animal evolution and the origins of nervous systems.
Budd GE., Philos Trans R Soc Lond B Biol Sci 370(1684), 2015
PMID: 26554037
Beginnings of a synthetic approach to desert ant navigation.
Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R., Behav Processes 102(), 2014
PMID: 24129029
Way-finding in displaced clock-shifted bees proves bees use a cognitive map.
Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MD, Gallistel CR, Warman GR, Menzel R., Proc Natl Acad Sci U S A 111(24), 2014
PMID: 24889633
Still no convincing evidence for cognitive map use by honeybees.
Cheung A, Collett M, Collett TS, Dewar A, Dyer F, Graham P, Mangan M, Narendra A, Philippides A, Stürzl W, Webb B, Wystrach A, Zeil J., Proc Natl Acad Sci U S A 111(42), 2014
PMID: 25277972
Life as a cataglyphologist--and beyond.
Wehner R., Annu Rev Entomol 58(), 2013
PMID: 23317039
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Invertebrate learning and cognition: relating phenomena to neural substrate.
Perry CJ, Barron AB, Cheng K., Wiley Interdiscip Rev Cogn Sci 4(5), 2013
PMID: 26304245
Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit.
Wystrach A, Schwarz S, Baniel A, Cheng K., Proc Biol Sci 280(1769), 2013
PMID: 23966644
Spatial memory in insect navigation.
Collett M, Chittka L, Collett TS., Curr Biol 23(17), 2013
PMID: 24028962
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective.
Cheng K, Huttenlocher J, Newcombe NS., Psychon Bull Rev 20(6), 2013
PMID: 23456412
Neural network architecture for cognitive navigation in dynamic environments.
Villacorta-Atienza JA, Makarov VA., IEEE Trans Neural Netw Learn Syst 24(12), 2013
PMID: 24805224
A model of ant route navigation driven by scene familiarity.
Baddeley B, Graham P, Husbands P, Philippides A., PLoS Comput Biol 8(1), 2012
PMID: 22241975
Path integration mediated systematic search: a Bayesian model.
Vickerstaff RJ, Merkle T., J Theor Biol 307(), 2012
PMID: 22575969
Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration.
Cheung A, Ball D, Milford M, Wyeth G, Wiles J., PLoS Comput Biol 8(8), 2012
PMID: 22916006
What is comparable in comparative cognition?
Chittka L, Rossiter SJ, Skorupski P, Fernando C., Philos Trans R Soc Lond B Biol Sci 367(1603), 2012
PMID: 22927566
Cognition in insects.
Webb B., Philos Trans R Soc Lond B Biol Sci 367(1603), 2012
PMID: 22927570

57 References

Daten bereitgestellt von Europe PubMed Central.

Desert ant navigation: how miniature brains solve complex tasks. Karl von Frisch Lecture.
Wehner R., 2003
The desert ant's navigational toolkit: procedural rather than positional knowledge.
Wehner R., 2008
Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Hymernoptera: Formicidae).
Ronacher B., 2008
Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti.
Cheng K, Narendra A, Sommer S, Wehner R., Behav. Processes 80(3), 2008
PMID: 19049857
Polarization vision.
Wehner R, Labhart T., 2006
Wind and sky as compass cues in desert ant navigation.
Muller M, Wehner R., Naturwissenschaften 94(7), 2007
PMID: 17361400
The ant odometer: stepping on stilts and stumps.
Wittlinger M, Wehner R, Wolf H., 2007
Path integration in insects.
Wehner R, Srinivasan MV., 2003
The ant's estimation of distance travelled: experiments with desert ants, Cataglyphis fortis.
Sommer S, Wehner R., 2004
Visual navigation in insects: coupling of egocentric and geocentric information
Wehner R, Michel B, Antonsen P., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317483
Multiroute memories in desert ants.
Sommer S, von Beeren C, Wehner R., Proc. Natl. Acad. Sci. U.S.A. 105(1), 2007
PMID: 18160534
Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera).
Wehner R, Srinivasan MV., 1981
The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis.
Müller M, Wehner R., 1994
Uncertainty about nest position influences systematic search strategies in desert ants.
Merkle T, Knaden M, Wehner R., J. Exp. Biol. 209(Pt 18), 2006
PMID: 16943494
Desert ants use foraging distance to adapt the nest search to the uncertainty of the path integrator.
Merkle T, Wehner R., 2010
Cognitive maps in rats and men.
TOLMAN EC., Psychol Rev 55(4), 1948
PMID: 18870876
The spatial memories for honeybee navigation.
Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J., 2000
Honey bees navigate according to a map-like spatial memory.
Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp F, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15710880
Navigational memories in ants and bees: memory retrieval when selecting and following routes.
Collett TS, Graham P, Harris RA, Hempel N., 2006
Ant navigation: one-way routes rather than maps.
Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U., Curr. Biol. 16(1), 2006
PMID: 16401425
Cognitive architecture of a mini-brain: the honeybee.
Menzel R, Giurfa M., Trends Cogn. Sci. (Regul. Ed.) 5(2), 2001
PMID: 11166636
The architecture of the desert ant's navigational toolkit (Hymenoptera: Formicidae).
Wehner R., 2009
Computational correlates of consciousness.
Cleeremans A., Prog. Brain Res. 150(), 2005
PMID: 16186017
Getting cognitive.
Cruse H, Schilling M., 2010
Celestial and terrestrial navigation: human strategies – insect strategies.
Wehner R., 1983
How do insects use path integration for their navigation?
Collett M, Collett TS., Biol Cybern 83(3), 2000
PMID: 11007299
The ant's path integration system: a neural architecture.
Hartmann G, Wehner R., 1995
Evolving a neural model of insect path integration.
Haferlach T, Wessnitzer J, Mangan M, Webb B., 2007
Which coordinate system for modelling path integration?
Vickerstaff RJ, Cheung A., J. Theor. Biol. 263(2), 2009
PMID: 19962387
Local vectors in desert ants: context dependent landmark learning during outbound and homebound runs.
Bisch-Knaden S, Wehner R., 2003
The learning and maintenance of local vectors in desert ant navigation.
Collett M, Collett TS., 2010
Elements for a general memory structure: properties of recurrent neural networks used to form situation models.
Makarov VA, Song Y, Velarde MG, Hubner D, Cruse H., Biol Cybern 98(5), 2008
PMID: 18350312
A mobile robot employing insect strategies for navigation.
Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R., 2000
Local visual homing by matched-filter descent in image distances.
Moller R, Vardy A., Biol Cybern 95(5), 2006
PMID: 17021827
Finding the way with a noisy brain.
Cheung A, Vickerstaff R., PLoS Comput. Biol. 6(11), 2010
PMID: 21085678
Harmonic radar: a new technique for investigating bumblebee and honeybee foraging flight.
Osborne JL, Williams ICH, Carreck NL, Poppy GM, Riley JR., 1997
The functional sense of central oscillations in walking.
Cruse H., Biol Cybern 86(4), 2002
PMID: 11956808
Behaviour-based modelling of hexapod locomotion: Linking biology and technical application.
Dürr V, Schmitz J, Cruse H., 2004
Cognition in invertebrates.
Menzel R, Brembs B, Giufra M., 2007
Ground plan of the insect mushroom body: functional and evolutionary implications.
Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM., J. Comp. Neurol. 513(3), 2009
PMID: 19152379
Insect brains.
Strausfeld NJ., 2001
Mushroom body memoir: from maps to models.
Heisenberg M., 2003
Plasticity of synaptic complexes in the mushroom bodies of the honeybee brain depends on age, experience and season.
Münz TS, Oberwallner G, Gehring K, Rössler W., 2008
Evolution, discovery, and interpretations of arthropod mushroom bodies.
Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K., Learn. Mem. 5(1-2), 1998
PMID: 10454370
Context generalization in Drosophila visual learning requires the mushroom bodies.
Liu L, Wolf R, Ernst R, Heisenberg M., Nature 400(6746), 1999
PMID: 10466722
Choice behavior of Drosophila facing contradictory visual cues.
Tang S, Guo A., Science 294(5546), 2001
PMID: 11711680
A brain region in the insect that supervises walking.
Strausfeld NJ., 1999
The central complex and the genetic dissection of locomotor behaviour.
Strauss R., Curr. Opin. Neurobiol. 12(6), 2002
PMID: 12490252
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21445233
PubMed | Europe PMC

Suchen in

Google Scholar