Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins

Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001)
The Plant Cell 13(2): 369-384.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ziemienowicz, A.; Merkle, ThomasUniBi; Schoumacher, F.; Hohn, B.; Rossi, L.
Abstract / Bemerkung
To study the mechanism of nuclear import of T-DNA, complexes consisting of the virulence proteins VirD2 and VirE2 as well as single-stranded DNA (ssDNA) were tested for import into plant nuclei in vitro. Import of these complexes was fast and efficient and could be inhibited by a competitor, a nuclear localization signal (NLS) coupled to BSA. For import of short ssDNA, VirD2 was sufficient, whereas import of long ssDNA additionally required VirE2. A VirD2 mutant lacking its C-terminal NLS was unable to mediate import of the T-DNA complexes into nuclei. Although free VirE2 molecules were imported into nuclei, once bound to ssDNA they were not imported, implying that when complexed to DNA, the NLSs of VirE2 are not exposed and thus do not function. RecA, another ssDNA binding protein, could substitute for VirE2 in the nuclear import of T-DNA but not in earlier events of T-DNA transfer to plant cells. We propose that VirD2 directs the T-DNA complex to the nuclear pore, whereas both proteins mediate its passage through the pore. Therefore, by binding to ssDNA, VirE2 may shape the T-DNA complex such that it is accepted for translocation into the nucleus.
Erscheinungsjahr
2001
Zeitschriftentitel
The Plant Cell
Band
13
Ausgabe
2
Seite(n)
369-384
ISSN
1040-4651
Page URI
https://pub.uni-bielefeld.de/record/1867317

Zitieren

Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L. Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. The Plant Cell. 2001;13(2):369-384.
Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., & Rossi, L. (2001). Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. The Plant Cell, 13(2), 369-384. https://doi.org/10.1105/tpc.13.2.369
Ziemienowicz, A., Merkle, Thomas, Schoumacher, F., Hohn, B., and Rossi, L. 2001. “Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins”. The Plant Cell 13 (2): 369-384.
Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., and Rossi, L. (2001). Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. The Plant Cell 13, 369-384.
Ziemienowicz, A., et al., 2001. Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. The Plant Cell, 13(2), p 369-384.
A. Ziemienowicz, et al., “Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins”, The Plant Cell, vol. 13, 2001, pp. 369-384.
Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., Rossi, L.: Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. The Plant Cell. 13, 369-384 (2001).
Ziemienowicz, A., Merkle, Thomas, Schoumacher, F., Hohn, B., and Rossi, L. “Import of agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins”. The Plant Cell 13.2 (2001): 369-384.

52 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Application of phiLOV2.1 as a fluorescent marker for visualization of Agrobacterium effector protein translocation.
Roushan MR, de Zeeuw MAM, Hooykaas PJJ, van Heusden GPH., Plant J 96(3), 2018
PMID: 30098065
Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J., Biotechnol Adv 33(6 pt 2), 2015
PMID: 25819757
Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.
Sakalis PA, van Heusden GP, Hooykaas PJ., Microbiologyopen 3(1), 2014
PMID: 24376037
Agrobacterium: nature's genetic engineer.
Nester EW., Front Plant Sci 5(), 2014
PMID: 25610442
Is VIP1 important for Agrobacterium-mediated transformation?
Shi Y, Lee LY, Gelvin SB., Plant J 79(5), 2014
PMID: 24953893
Identification of rice Di19 family reveals OsDi19-4 involved in drought resistance.
Wang L, Yu C, Chen C, He C, Zhu Y, Huang W., Plant Cell Rep 33(12), 2014
PMID: 25236158
Applying horizontal gene transfer phenomena to enhance non-viral gene therapy.
Elmer JJ, Christensen MD, Rege K., J Control Release 172(1), 2013
PMID: 23994344
Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
Han ZF, Hunter DM, Sibbald S, Zhang JS, Tian L., Mol Plant Microbe Interact 26(11), 2013
PMID: 24088018
A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex.
Ziemienowicz A, Shim YS, Matsuoka A, Eudes F, Kovalchuk I., Plant Physiol 158(4), 2012
PMID: 22291201
Antibegomoviral activity of the agrobacterial virulence protein VirE2.
Sunitha S, Marian D, Hohn B, Veluthambi K., Virus Genes 43(3), 2011
PMID: 21842234
Finding a way to the nucleus.
Gelvin SB., Curr Opin Microbiol 13(1), 2010
PMID: 20022799
VIP1: linking Agrobacterium-mediated transformation to plant immunity?
Liu Y, Kong X, Pan J, Li D., Plant Cell Rep 29(8), 2010
PMID: 20473505
Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.
Cheng YQ, Yang J, Xu FP, An LJ, Liu JF, Chen ZW., Appl Biochem Biotechnol 159(3), 2009
PMID: 19255730
Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold.
Lu J, den Dulk-Ras A, Hooykaas PJ, Glover JN., Proc Natl Acad Sci U S A 106(24), 2009
PMID: 19482939
The ongoing saga of Agrobacterium-host interactions.
Dafny-Yelin M, Levy A, Tzfira T., Trends Plant Sci 13(3), 2008
PMID: 18272423
IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in agrobacterium-mediated plant transformation.
Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena, Cuperus J, Gelvin SB., Plant Cell 20(10), 2008
PMID: 18836040
Localization of the plasmid-encoded proteins TraI and MobA in eukaryotic cells.
Silby MW, Ferguson GC, Billington C, Heinemann JA., Plasmid 57(2), 2007
PMID: 17084894
Biological systems of the host cell involved in Agrobacterium infection.
Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T., Cell Microbiol 9(1), 2007
PMID: 17222189
Yeast-plant coupled vector system for identification of nuclear proteins.
Zaltsman A, Yi BY, Krichevsky A, Gafni Y, Citovsky V., Plant Physiol 145(4), 2007
PMID: 17704231
Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens.
Louwerse JD, van Lier MC, van der Steen DM, de Vlaam CM, Hooykaas PJ, Vergunst AC., Plant Physiol 145(4), 2007
PMID: 17921337
Agrobacterium-mediated genetic transformation of plants: biology and biotechnology.
Tzfira T, Citovsky V., Curr Opin Biotechnol 17(2), 2006
PMID: 16459071
Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell.
Lacroix B, Li J, Tzfira T, Citovsky V., Can J Physiol Pharmacol 84(3-4), 2006
PMID: 16902581
Plant-derived transfer DNAs.
Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J., Plant Physiol 139(3), 2005
PMID: 16244143
The VirE1VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels.
Duckely M, Oomen C, Axthelm F, Van Gelder P, Waksman G, Engel A., Mol Microbiol 58(4), 2005
PMID: 16262795
A plant caspase-like protease activated during the hypersensitive response.
Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB., Plant Cell 16(1), 2004
PMID: 14660804
Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2.
Tao Y, Rao PK, Bhattacharjee S, Gelvin SB., Proc Natl Acad Sci U S A 101(14), 2004
PMID: 15047887
Improving plant genetic engineering by manipulating the host.
Gelvin SB., Trends Biotechnol 21(3), 2003
PMID: 12628361
The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer.
Duckely M, Hohn B., FEMS Microbiol Lett 223(1), 2003
PMID: 12798992
F factor conjugation is a true type IV secretion system.
Lawley TD, Klimke WA, Gubbins MJ, Frost LS., FEMS Microbiol Lett 224(1), 2003
PMID: 12855161
The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants.
Bakó L, Umeda M, Tiburcio AF, Schell J, Koncz C., Proc Natl Acad Sci U S A 100(17), 2003
PMID: 12900506
Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates.
Tzfira T, Frankman LR, Vaidya M, Citovsky V., Plant Physiol 133(3), 2003
PMID: 14551323
Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1.
Vergunst AC, van Lier MC, den Dulk-Ras A, Hooykaas PJ., Plant Physiol 133(3), 2003
PMID: 14551327
Port of entry--the type III secretion translocon.
Büttner D, Bonas U., Trends Microbiol 10(4), 2002
PMID: 11912026
Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens.
Krall L, Wiedemann U, Unsin G, Weiss S, Domke N, Baron C., Proc Natl Acad Sci U S A 99(17), 2002
PMID: 12177443

59 References

Daten bereitgestellt von Europe PubMed Central.

In vitro nuclear protein import using permeabilized mammalian cells.
Adam SA, Sterne-Marr R, Gerace L., Methods Cell Biol. 35(), 1991
PMID: 1779864
A plant in vitro system for the nuclear import of proteins.
Merkle T, Leclerc D, Marshallsay C, Nagy F., Plant J. 10(6), 1996
PMID: 9011099
An extended DNA structure through deoxyribose-base stacking induced by RecA protein.
Nishinaka T, Ito Y, Yokoyama S, Shibata T., Proc. Natl. Acad. Sci. U.S.A. 94(13), 1997
PMID: 9192615
Diversity in the signals required for nuclear accumulation of U snRNPs and variety in the pathways of nuclear transport.
Fischer U, Darzynkiewicz E, Tahara SM, Dathan NA, Luhrmann R, Mattaj IW., J. Cell Biol. 113(4), 1991
PMID: 1827444
Characterization of the virE operon of the Agrobacterium Ti plasmid pTiA6.
Winans SC, Allenza P, Stachel SE, McBride KE, Nester EW., Nucleic Acids Res. 15(2), 1987
PMID: 3547330
Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco.
Citovsky V, Warnick D, Zambryski P., Proc. Natl. Acad. Sci. U.S.A. 91(8), 1994
PMID: 8159726
The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals.
Tinland B, Koukolikova-Nicola Z, Hall MN, Hohn B., Proc. Natl. Acad. Sci. U.S.A. 89(16), 1992
PMID: 1502156
Targeting of a functional Escherichia coli RecA protein to the nucleus of plant cells.
Reiss B, Kosak H, Klemm M, Schell J., Mol. Gen. Genet. 253(6), 1997
PMID: 9079880
Nuclear protein import.
Gorlich D., Curr. Opin. Cell Biol. 9(3), 1997
PMID: 9159081
Nuclear localization of Agrobacterium VirE2 protein in plant cells.
Citovsky V, Zupan J, Warnick D, Zambryski P., Science 256(5065), 1992
PMID: 1615325
Differential modes of nuclear localization signal (NLS) recognition by three distinct classes of NLS receptors.
Miyamoto Y, Imamoto N, Sekimoto T, Tachibana T, Seki T, Tada S, Enomoto T, Yoneda Y., J. Biol. Chem. 272(42), 1997
PMID: 9334211
HIV-1 virology. Simply Marvelous nuclear transport.
Goldfarb DS., Curr. Biol. 5(6), 1995
PMID: 7552157
Portals of entry: uncovering HIV nuclear transport pathways.
Stevenson M., Trends Cell Biol. 6(1), 1996
PMID: 15157526
Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium.
Ziemienowicz A, Gorlich D, Lanka E, Hohn B, Rossi L., Proc. Natl. Acad. Sci. U.S.A. 96(7), 1999
PMID: 10097105
Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells.
Zupan JR, Citovsky V, Zambryski P., Proc. Natl. Acad. Sci. U.S.A. 93(6), 1996
PMID: 8637884
Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration.
Mysore KS, Bassuner B, Deng XB, Darbinian NS, Motchoulski A, Ream W, Gelvin SB., Mol. Plant Microbe Interact. 11(7), 1998
PMID: 9650299
RNA transport.
Nakielny S, Fischer U, Michael WM, Dreyfuss G., Annu. Rev. Neurosci. 20(), 1997
PMID: 9056715
Transport of proteins and RNAs in and out of the nucleus.
Nakielny S, Dreyfuss G., Cell 99(7), 1999
PMID: 10619422
Protein import into the nucleus: an integrated view.
Hicks GR, Raikhel NV., Annu. Rev. Cell Dev. Biol. 11(), 1995
PMID: 8689555
Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus.
Tinland B, Hohn B, Puchta H., Proc. Natl. Acad. Sci. U.S.A. 91(17), 1994
PMID: 11607492
Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA.
Flory J, Tsang SS, Muniyappa K., Proc. Natl. Acad. Sci. U.S.A. 81(22), 1984
PMID: 6594678
Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import.
O'Neill RE, Jaskunas R, Blobel G, Palese P, Moroianu J., J. Biol. Chem. 270(39), 1995
PMID: 7559393
Early transcription of Agrobacterium T-DNA genes in tobacco and maize.
Narasimhulu SB, Deng XB, Sarria R, Gelvin SB., Plant Cell 8(5), 1996
PMID: 8672885
Molecular mechanisms of nuclear protein transport.
Moroianu J., Crit. Rev. Eukaryot. Gene Expr. 7(1-2), 1997
PMID: 9034715
Stable transfer of intact high molecular weight DNA into plant chromosomes.
Hamilton CM, Frary A, Lewis C, Tanksley SD., Proc. Natl. Acad. Sci. U.S.A. 93(18), 1996
PMID: 8790442
Nuclear import in permeabilized protoplasts from higher plants has unique features.
Hicks GR, Smith HM, Lobreaux S, Raikhel NV., Plant Cell 8(8), 1996
PMID: 8776900
The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome.
Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B., EMBO J. 14(14), 1995
PMID: 7628458
Roles of importin in nuclear protein import.
Gorlich D, Laskey RA., Cold Spring Harb. Symp. Quant. Biol. 60(), 1995
PMID: 8824444
Use of T7 RNA polymerase to direct expression of cloned genes.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW., Meth. Enzymol. 185(), 1990
PMID: 2199796
AGROBACTERIUM AND PLANT GENES INVOLVED IN T-DNA TRANSFER AND INTEGRATION.
Gelvin SB., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012192
Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA.
Sen P, Pazour GJ, Anderson D, Das A., J. Bacteriol. 171(5), 1989
PMID: 2708313
Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units.
Chrysogelos S, Griffith J., Proc. Natl. Acad. Sci. U.S.A. 79(19), 1982
PMID: 6764531
Nucleic acid transport in plant-pathogen interactions.
Lartey R, Citovsky V., Genet. Eng. (N.Y.) 19(), 1997
PMID: 9193110
The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease.
Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW., Cell 47(3), 1986
PMID: 3021341
Nuclear import of U snRNPs requires importin beta.
Palacios I, Hetzer M, Adam SA, Mattaj IW., EMBO J. 16(22), 1997
PMID: 9362492
The molecular structure of agrobacterium VirE2-single stranded DNA complexes involved in nuclear import.
Citovsky V, Guralnick B, Simon MN, Wall JS., J. Mol. Biol. 271(5), 1997
PMID: 9299322
Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism.
Miranda A, Janssen G, Hodges L, Peralta EG, Ream W., J. Bacteriol. 174(7), 1992
PMID: 1551847
Lessons in gene transfer to plants by a gifted microbe.
Hansen G, Chilton MD., Curr. Top. Microbiol. Immunol. 240(), 1999
PMID: 10394714
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11226191
PubMed | Europe PMC

Suchen in

Google Scholar