Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly

Hollenbach B, Schreiber L, Hartung W, Dietz K-J (1997)
Planta 203(1): 9-19.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Hollenbach, B.; Schreiber, L.; Hartung, W.; Dietz, Karl-JosefUniBi
Erscheinungsjahr
1997
Zeitschriftentitel
Planta
Band
203
Ausgabe
1
Seite(n)
9-19
ISSN
0032-0935
eISSN
1432-2048
Page URI
https://pub.uni-bielefeld.de/record/1866491

Zitieren

Hollenbach B, Schreiber L, Hartung W, Dietz K-J. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly. Planta. 1997;203(1):9-19.
Hollenbach, B., Schreiber, L., Hartung, W., & Dietz, K. - J. (1997). Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly. Planta, 203(1), 9-19. doi:10.1007/s004250050159
Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K. - J. (1997). Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly. Planta 203, 9-19.
Hollenbach, B., et al., 1997. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly. Planta, 203(1), p 9-19.
B. Hollenbach, et al., “Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly”, Planta, vol. 203, 1997, pp. 9-19.
Hollenbach, B., Schreiber, L., Hartung, W., Dietz, K.-J.: Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly. Planta. 203, 9-19 (1997).
Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, Karl-Josef. “Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: Implications for the involvement of lipid transfer proteins in wax assembly”. Planta 203.1 (1997): 9-19.

46 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability.
Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S., Plant Signal Behav 13(8), 2018
PMID: 29621424
Interactions between plant hormones and heavy metals responses.
Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M., Genet Mol Biol 40(1 suppl 1), 2017
PMID: 28399194
The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation.
Woźniak A, Drzewiecka K, Kęsy J, Marczak Ł, Narożna D, Grobela M, Motała R, Bocianowski J, Morkunas I., Molecules 22(9), 2017
PMID: 28837107
LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.
Gao S, Guo W, Feng W, Liu L, Song X, Chen J, Hou W, Zhu H, Tang S, Hu J., Mol Plant Pathol 17(3), 2016
PMID: 26123657
Lipid transfer proteins: classification, nomenclature, structure, and function.
Salminen TA, Blomqvist K, Edqvist J., Planta 244(5), 2016
PMID: 27562524
The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations.
Belimov AA, Dodd IC, Safronova VI, Malkov NV, Davies WJ, Tikhonovich IA., J Exp Bot 66(8), 2015
PMID: 25694548
A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis.
Wang F, Zang XS, Kabir MR, Liu KL, Liu ZS, Ni ZF, Yao YY, Hu ZR, Sun QX, Peng HR., Gene 550(1), 2014
PMID: 25106859
Isolation and Functional Analysis of ZmLTP3, a Homologue to Arabidopsis LTP3.
Zou HW, Tian XH, Ma GH, Li ZX., Int J Mol Sci 14(3), 2013
PMID: 23455470
Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling.
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellín P, Oliveros JC, Martínez-Zapater JM., PLoS One 7(6), 2012
PMID: 22768087
An extracellular lipid transfer protein is relocalized intracellularly during seed germination.
Pagnussat L, Burbach C, Baluska F, de la Canal L., J Exp Bot 63(18), 2012
PMID: 23162115
Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties.
Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OL, Gomes VM., Physiol Plant 142(3), 2011
PMID: 21382036
Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties
Diz MS, Carvalho AO, Ribeiro SFF, Da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OLT, Gomes VM., Physiol Plant 142(3), 2011
PMID: IND44589858
Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses.
Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE., Plant Cell Physiol 51(10), 2010
PMID: 20693332
Unexpected localization of a lipid transfer protein in germinating sunflower seeds.
Pagnussat LA, Lombardo C, Regente M, Pinedo M, Martín M, de la Canal L., J Plant Physiol 166(8), 2009
PMID: 19117640
Characterization and antifungal properties of wheat nonspecific lipid transfer proteins.
Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, Laroche A., Mol Plant Microbe Interact 21(3), 2008
PMID: 18257684
The leaf epidermome of Catharanthus roseus reveals its biochemical specialization.
Murata J, Roepke J, Gordon H, De Luca V., Plant Cell 20(3), 2008
PMID: 18326827
The structure of "defective in induced resistance" protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein.
Lascombe MB, Bakan B, Buhot N, Marion D, Blein JP, Larue V, Lamb C, Prangé T., Protein Sci 17(9), 2008
PMID: 18552128
Defense Responses in Grapevine Leaves Against Botrytis cinerea Induced by Application of a Pythium oligandrum Strain or Its Elicitin, Oligandrin, to Roots
Mohamed N, Lherminier J, Farmer MJ, Fromentin J, Béno N, Houot V, Milat ML, Blein JP., Phytopathology 97(5), 2007
PMID: IND43952109
Defense Responses in Grapevine Leaves Against Botrytis cinerea Induced by Application of a Pythium oligandrum Strain or Its Elicitin, Oligandrin, to Roots.
Mohamed N, Lherminier J, Farmer MJ, Fromentin J, Béno N, Houot V, Milat ML, Blein JP., Phytopathology 97(5), 2007
PMID: 18943581
Changes in the tobacco leaf apoplast proteome in response to salt stress.
Dani V, Simon WJ, Duranti M, Croy RR., Proteomics 5(3), 2005
PMID: 15682462
Large scale purification of rapeseed proteins (Brassica napus L.).
Bérot S, Compoint JP, Larré C, Malabat C, Guéguen J., J Chromatogr B Analyt Technol Biomed Life Sci 818(1), 2005
PMID: 15722042
Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis.
Costaglioli P, Joubès J, Garcia C, Stef M, Arveiler B, Lessire R, Garbay B., Biochim Biophys Acta 1734(3), 2005
PMID: 15914083
A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis).
Wu G, Robertson AJ, Liu X, Zheng P, Wilen RW, Nesbitt NT, Gusta LV., J Plant Physiol 161(4), 2004
PMID: 15128032
Amino acid sequence, biochemical characterization, and comparative modeling of a nonspecific lipid transfer protein from Amaranthus hypochondriacus.
del Carmen Ramírez-Medeles M, Aguilar MB, Miguel RN, Bolaños-García VM, García-Hernández E, Soriano-García M., Arch Biochem Biophys 415(1), 2003
PMID: 12801509
Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds.
Castro MS, Gerhardt IR, Orrù S, Pucci P, Bloch C., J Chromatogr B Analyt Technol Biomed Life Sci 794(1), 2003
PMID: 12888203
The biopolymers cutin and suberin.
Nawrath C., Arabidopsis Book 1(), 2002
PMID: 22303198
From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms.
Blein JP, Coutos-Thévenot P, Marion D, Ponchet M., Trends Plant Sci 7(7), 2002
PMID: 12119165
Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family.
Hincha DK, Neukamm B, Sror HA, Sieg F, Weckwarth W, Rückels M, Lullien-Pellerin V, Schröder W, Schmitt JM., Plant Physiol 125(2), 2001
PMID: 11161041
A lipid transfer protein binds to a receptor involved in the control of plant defence responses.
Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume BF, Milat ML, Ponchet M, Mikès V, Kader JC, Blein JP., FEBS Lett 509(1), 2001
PMID: 11734200
Expression of a lipid transfer protein gene family during cotton fibre development.
Orford SJ, Timmis JN., Biochim Biophys Acta 1483(2), 2000
PMID: 10634943
Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies).
Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S., Plant Mol Biol 42(3), 2000
PMID: 10798616
Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves.
Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W., J Exp Bot 51(346), 2000
PMID: 10948220
Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins.
Poznanski J, Sodano P, Suh SW, Lee JY, Ptak M, Vovelle F., Eur J Biochem 259(3), 1999
PMID: 10092854
Subunit C of the vacuolar H+-ATPase of Hordeum vulgare.
Tavakoli N, Eckerskorn C, Golldack D, Dietz KJ., FEBS Lett 456(1), 1999
PMID: 10452532
Lipid trafficking in plant cells.
Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C., Prog Lipid Res 37(6), 1998
PMID: 10209654

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9299788
PubMed | Europe PMC

Suchen in

Google Scholar