Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39

Schlüter A, Patschkowski T, Quandt J, Selinger LB, Weidner S, Krämer M, Zhou L, Hynes MF, Priefer UB (1997)
Mol Plant Microbe Interact 10(5): 605-616.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ; ; ; ; ;
Abstract / Bemerkung
DNA corresponding to two copies of the Rhizobium leguminosarum bv. viciae strain VF39 fixNOQP operon coding for a putative symbiotic terminal oxidase of the heme-copper oxidase superfamily was cloned, sequenced, and genetically analyzed. The first copy is located upstream of the fixK-fixL region on plasmid pRleVF39c, whereas the second copy resides on the nodulation plasmid pRleVF39d. Insertional mutagenesis with antibiotic resistance cassettes confirmed that both copies were functional, and that the presence of at least one functional copy was required for nitrogen fixation. The deduced amino acid sequences of both fixN genes are highly similar (95% identity) and contain 15 putative transmembrane helices, suggesting that the fixN gene products are integral membrane proteins. Furthermore, six histidine residues predicted to be the ligands for a heme-copper binuclear center and a low-spin heme b are conserved in both R. leguminosarum fixN proteins. The deduced fixO and fixP gene products show characteristics of membrane-bound monoheme and diheme cytochrome c, respectively. Upstream of both fixN copies putative Fnr-consensus binding sites (anaeroboxes) were found that differ in certain base pairs. As R. leguminosarum VF39 possesses two members of the Fnr/FixK regulator family, FnrN and FixK, the possible differential regulation of both fixN copies was analyzed with fixN-gusA reporter gene fusions. Both fixN fusions were induced under free-living microaerobic conditions and in the symbiotic zone of the root nodule. Induction of the expression of fixNc and fixNd was highly reduced in a fnrN mutant background and in a fixL mutant background, whereas fixK was only marginally involved in fixN regulation. Residual expression of fixN was observed in an fnrN/fixK double mutant.
Mol Plant Microbe Interact


Schlüter A, Patschkowski T, Quandt J, et al. Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact. 1997;10(5):605-616.
Schlüter, A., Patschkowski, T., Quandt, J., Selinger, L. B., Weidner, S., Krämer, M., Zhou, L., et al. (1997). Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact, 10(5), 605-616. doi:10.1094/MPMI.1997.10.5.605
Schlüter, A., Patschkowski, T., Quandt, J., Selinger, L. B., Weidner, S., Krämer, M., Zhou, L., Hynes, M. F., and Priefer, U. B. (1997). Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact 10, 605-616.
Schlüter, A., et al., 1997. Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact, 10(5), p 605-616.
A. Schlüter, et al., “Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39”, Mol Plant Microbe Interact, vol. 10, 1997, pp. 605-616.
Schlüter, A., Patschkowski, T., Quandt, J., Selinger, L.B., Weidner, S., Krämer, M., Zhou, L., Hynes, M.F., Priefer, U.B.: Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact. 10, 605-616 (1997).
Schlüter, Andreas, Patschkowski, Thomas, Quandt, J., Selinger, L.B., Weidner, Stefan, Krämer, M., Zhou, L., Hynes, M.F., and Priefer, U.B. “Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39”. Mol Plant Microbe Interact 10.5 (1997): 605-616.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genomic Diversity in the Endosymbiotic Bacterium Rhizobium leguminosarum.
Sánchez-Cañizares C, Jorrín B, Durán D, Nadendla S, Albareda M, Rubio-Sanz L, Lanza M, González-Guerrero M, Prieto RI, Brito B, Giglio MG, Rey L, Ruiz-Argüeso T, Palacios JM, Imperial J., Genes (Basel) 9(2), 2018
PMID: 29364862
Functional analysis of the copy 1 of the fixNOQP operon of Ensifer meliloti under free-living micro-oxic and symbiotic conditions.
Torres MJ, Hidalgo-García A, Bedmar EJ, Delgado MJ., J Appl Microbiol 114(6), 2013
PMID: 23414432
Transcript profiling of common bean nodules subjected to oxidative stress.
Ramírez M, Guillén G, Fuentes SI, Iñiguez LP, Aparicio-Fabre R, Zamorano-Sánchez D, Encarnación-Guevara S, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G., Physiol Plant 149(3), 2013
PMID: 23432573
Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation.
Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF., Microbiology 158(pt 5), 2012
PMID: 22343359
FxkR provides the missing link in the fixL-fixK signal transduction cascade in Rhizobium etli CFN42.
Zamorano-Sánchez D, Reyes-González A, Gómez-Hernández N, Rivera P, Georgellis D, Girard L., Mol Plant Microbe Interact 25(11), 2012
PMID: 22809273
A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti.
Geddes BA, Pickering BS, Poysti NJ, Collins H, Yudistira H, Oresnik IJ., Microbiology 156(pt 10), 2010
PMID: 20671019
Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum.
Król JE, Mazur A, Marczak M, Skorupska A., Genomics 89(2), 2007
PMID: 17014983
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J., Genome Biol 7(4), 2006
PMID: 16640791
Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases.
Comolli JC, Donohue TJ., Mol Microbiol 51(4), 2004
PMID: 14763990
Regulatory role of Rhizobium etli CNPAF512 fnrN during symbiosis.
Moris M, Dombrecht B, Xi C, Vanderleyden J, Michiels J., Appl Environ Microbiol 70(3), 2004
PMID: 15006745
Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome.
Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K., J Bacteriol 186(8), 2004
PMID: 15060047
Modified RP4 and Tn5-Mob derivatives for facilitated manipulation of large plasmids in Gram-negative bacteria.
Quandt J, Clark RG, Venter AP, Clark SR, Twelker S, Hynes MF., Plasmid 52(1), 2004
PMID: 15212888
Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule.
Yost CK, Del Bel KL, Quandt J, Hynes MF., Arch Microbiol 182(6), 2004
PMID: 15502966
Developmental downregulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum.
Tsyganov VE, Voroshilova VA, Herrera-Cervera JA, Sanjuan-Pinilla JM, Borisov AY, Tikhonovich IA, Priefer UB, Olivares J, Sanjuan J., New Phytol 159(2), 2003
PMID: IND23344040
Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A.
Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW., J Bacteriol 184(11), 2002
PMID: 12003951
Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM.
Zhang XX, Kosier B, Priefer UB., J Bacteriol 183(6), 2001
PMID: 11222618
Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae.
Voroshilova VA, Boesten B, Tsyganov VE, Borisov AY, Tikhonovich IA, Priefer UB., Mol Plant Microbe Interact 14(4), 2001
PMID: 11310734
Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes.
Allaway D, Schofield NA, Leonard ME, Gilardoni L, Finan TM, Poole PS., Environ Microbiol 3(6), 2001
PMID: 11472504
Regulation of gene expression in response to oxygen in Rhizobium etli: role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation.
Lopez O, Morera C, Miranda-Rios J, Girard L, Romero D, Soberón M., J Bacteriol 183(24), 2001
PMID: 11717256
Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability.
Oresnik IJ, Liu SL, Yost CK, Hynes MF., J Bacteriol 182(12), 2000
PMID: 10852892
Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade.
Girard L, Brom S, Dávalos A, López O, Soberón M, Romero D., Mol Plant Microbe Interact 13(12), 2000
PMID: 11106020
A cytochrome cbb3 (cytochrome c) terminal oxidase in Azospirillum brasilense Sp7 supports microaerobic growth.
Marchal K, Sun J, Keijers V, Haaker H, Vanderleyden J., J Bacteriol 180(21), 1998
PMID: 9791120

37 References

Daten bereitgestellt von Europe PubMed Central.

Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum.
Zufferey R, Preisig O, Hennecke H, Thony-Meyer L., J. Biol. Chem. 271(15), 1996
PMID: 8621562
In vitro insertional mutagenesis with a selectable DNA fragment.
Prentki P, Krisch HM., Gene 29(3), 1984
PMID: 6237955
Rhizobium--plant signal exchange.
Fisher RF, Long SR., Nature 357(6380), 1992
PMID: 1614514
Leghemoglobin and Rhizobium Respiration
Appleby, Annual Review of Plant Physiology 35(1), 1984
A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria
Simon, Bio/Technology 1(9), 1983
Assaying chimeric genes in plants: The GUS gene fusion system
Jefferson, Plant Molecular Biology Reporter 5(4), 1987
Gas Exchange of Legume Nodules and the Regulation of Nitrogenase Activity
Hunt, Annual Review of Plant Physiology and Plant Molecular Biology 44(1), 1993
Rhizobium leguminosarum bv. viciae contains a second fnr/fixK-like gene and an unusual fixL homologue.
Patschkowski T, Schluter A, Priefer UB., Mol. Microbiol. 21(2), 1996
PMID: 8858582
Prokaryotic plant parasites.
Long SR, Staskawicz BJ., Cell 73(5), 1993
PMID: 8500181
Role of the fixGHI region of Azorhizobium caulinodans in free-living and symbiotic nitrogen fixation.
Mandon K, Kaminski PA, Mougel C, Desnoues N, Dreyfus B, Elmerich C., FEMS Microbiol. Lett. 114(2), 1993
PMID: 8282187
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
Rhizobium Phylogenies and Bacterial Genetic Diversity
Martinez-Romero, Critical Reviews in Plant Sciences 15(2), 1996
Regulation of nitrogen fixation in Azorhizobium caulinodans: identification of a fixK-like gene, a positive regulator of nifA.
Kaminski PA, Mandon K, Arigoni F, Desnoues N, Elmerich C., Mol. Microbiol. 5(8), 1991
PMID: 1766374
Identification of symbiosis-specific c-type cytochromes and a putative oxidase in bacteroids of Rhizobium leguminosarum biovar viciae
Vargas, Microbiology 142(1), 1996
Rapid and sensitive sequence comparison with FASTP and FASTA.
Pearson WR., Meth. Enzymol. 183(), 1990
PMID: 2156132
Identification of protein coding regions by database similarity search.
Gish W, States DJ., Nat. Genet. 3(3), 1993
PMID: 8485583
Structural and functional analysis of the fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512.
D'hooghe I, Michiels J, Vlassak K, Verreth C, Waelkens F, Vanderleyden J., Mol. Gen. Genet. 249(1), 1995
PMID: 8552028
An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK.
Colonna-Romano S, Arnold W, Schluter A, Boistard P, Puhler A, Priefer UB., Mol. Gen. Genet. 223(1), 1990
PMID: 2175385
Melanin production encoded by a cryptic plasmid in a Rhizobium leguminosarum strain
Hynes, Archives of Microbiology 150(4), 1988
The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa
Hynes, MGG Molecular & General Genetics 202(3), 1986
Cascade regulation of nif gene expression in Rhizobium meliloti.
David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D., Cell 54(5), 1988
PMID: 2842062
Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design.
de Gier JW, Schepper M, Reijnders WN, van Dyck SJ, Slotboom DJ, Warne A, Saraste M, Krab K, Finel M, Stouthamer AH, van Spanning RJ, van der Oost J., Mol. Microbiol. 20(6), 1996
PMID: 8809776


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 9204566
PubMed | Europe PMC

Suchen in

Google Scholar