Adaptation of Corynebacterium glutamicum to salt-stress conditions

Fraenzel B, Troetschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA (2010)
PROTEOMICS 10(3): 445-457.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fraenzel, Benjamin; Troetschel, Christian; Rückert, ChristianUniBi ; Kalinowski, JörnUniBi; Poetsch, Ansgar; Wolters, Dirk Andreas
Abstract / Bemerkung
Corynebacterium glutamicum is one of the biotechnologically most important microorganisms because of its ability to enrich amino acids extracellularly. Hence, C. glutamicum requires effective adaptation Strategies against both hypo- and hyperosmotic stress. We give a comprehensive and coherent outline about the quantitative dynamics of C. glutamicum during adaptation to hyperosmotic stress at the transcript and protein levels. The osmolyte carrier Prop, playing a pivotal role in hyperosmotic stress defence, exhibits the strongest up-regulation of all proteins. A conspicuously regulated group comprises proteins involved in lipid biosynthesis of the cell envelope. This is in accordance with our observation of a more viscous and stickier cell envelope, which is supported by the findings of an altered lipid composition. Together with our results, showing that several transporters were down-regulated, this membrane adaptation appears to be one of C. glutamicum's major protection strategies against hyperosmotic stress. In addition, we demonstrate that no oxidative stress and no iron limitation occur during salt stress contrary to former postulations. Ultimately, it is remarkable that various proteins with divergent mRNA-protein dynamics and regulation have been observed. This leads to the assumption that there are still unknown mechanisms in between the bacterial transcription, translation and post-translation and that these are waiting to be unravelled.
Stichworte
Membrane proteome; Microbiology; Salt-stress; Opposed mRNA-protein regulation; Corynebacterium glutamicum; Altered cell envelope
Erscheinungsjahr
2010
Zeitschriftentitel
PROTEOMICS
Band
10
Ausgabe
3
Seite(n)
445-457
ISSN
1615-9853
eISSN
1615-9861
Page URI
https://pub.uni-bielefeld.de/record/1796753

Zitieren

Fraenzel B, Troetschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA. Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS. 2010;10(3):445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., & Wolters, D. A. (2010). Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS, 10(3), 445-457. https://doi.org/10.1002/pmic.200900482
Fraenzel, Benjamin, Troetschel, Christian, Rückert, Christian, Kalinowski, Jörn, Poetsch, Ansgar, and Wolters, Dirk Andreas. 2010. “Adaptation of Corynebacterium glutamicum to salt-stress conditions”. PROTEOMICS 10 (3): 445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., and Wolters, D. A. (2010). Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS 10, 445-457.
Fraenzel, B., et al., 2010. Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS, 10(3), p 445-457.
B. Fraenzel, et al., “Adaptation of Corynebacterium glutamicum to salt-stress conditions”, PROTEOMICS, vol. 10, 2010, pp. 445-457.
Fraenzel, B., Troetschel, C., Rückert, C., Kalinowski, J., Poetsch, A., Wolters, D.A.: Adaptation of Corynebacterium glutamicum to salt-stress conditions. PROTEOMICS. 10, 445-457 (2010).
Fraenzel, Benjamin, Troetschel, Christian, Rückert, Christian, Kalinowski, Jörn, Poetsch, Ansgar, and Wolters, Dirk Andreas. “Adaptation of Corynebacterium glutamicum to salt-stress conditions”. PROTEOMICS 10.3 (2010): 445-457.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum.
Xu N, Wang L, Cheng H, Liu Q, Liu J, Ma Y., FEMS Microbiol Lett 363(3), 2016
PMID: 26667218
Comparative proteome analysis reveals proteins involved in salt adaptation in Photobacterium damselae subsp. piscicida.
Chuang MY, Tsai WC, Kuo TY, Chen HM, Chen WJ., J Basic Microbiol 56(11), 2016
PMID: 27282981
Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT.
Voges R, Corsten S, Wiechert W, Noack S., J Proteomics 113(), 2015
PMID: 25451015
The CatSper channel controls chemosensation in sea urchin sperm.
Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strünker T., EMBO J 34(3), 2015
PMID: 25535245
High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor.
Pichlo M, Bungert-Plümke S, Weyand I, Seifert R, Bönigk W, Strünker T, Kashikar ND, Goodwin N, Müller A, Pelzer P, Van Q, Enderlein J, Klemm C, Krause E, Trötschel C, Poetsch A, Kremmer E, Kaupp UB, Körschen HG, Collienne U., J Cell Biol 206(4), 2014
PMID: 25135936
Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria.
Trötschel C, Albaum SP, Poetsch A., Microb Biotechnol 6(6), 2013
PMID: 23425033
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide.
Fränzel B, Penkova M, Frese C, Metzler-Nolte N, Andreas Wolters D., Proteomics 12(14), 2012
PMID: 22685012
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch A, Haussmann U, Burkovski A., Proteomics 11(15), 2011
PMID: 21674800
Advanced MudPIT as a next step toward high proteome coverage.
Fränzel B, Wolters DA., Proteomics 11(18), 2011
PMID: 21751368
Cell response of Escherichia coli to cisplatin-induced stress.
Stefanopoulou M, Kokoschka M, Sheldrick WS, Wolters DA., Proteomics 11(21), 2011
PMID: 21972224
Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.
Fränzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA., J Biol Inorg Chem 15(8), 2010
PMID: 20658302

63 References

Daten bereitgestellt von Europe PubMed Central.


Liebl, 1992

Burkovski, 2008

Eggeling, 2005
Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy.
Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Puhler A, Kalinowski J., J. Biotechnol. 112(1-2), 2004
PMID: 15288952

Morbach, 2008
Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum.
Weinand M, Kramer R, Morbach S., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17390131

Weinand, 2004

Ley, 2005

Morbach, 2005
Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations.
Mehra A, Lee KH, Hatzimanikatis V., Biotechnol. Bioeng. 84(7), 2003
PMID: 14708123
Molecular analyses of mycobacteria other than the M. tuberculosis complex isolated from Northern Ireland cattle.
Hughes MS, Ball NW, McCarroll J, Erskine M, Taylor MJ, Pollock JM, Skuce RA, Neill SD., Vet. Microbiol. 108(1-2), 2005
PMID: 15917138
Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis
Follmann, BMC Genomics (), 0
Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.
Hoper D, Bernhardt J, Hecker M., Proteomics 6(5), 2006
PMID: 16440371
Bacterial membrane proteomics.
Poetsch A, Wolters D., Proteomics 8(19), 2008
PMID: 18780352
Production of L-threonine by analog-resistant mutants
Kase, Agric. Biol. Chem. 36(), 1972
A correlation algorithm for the automated quantitative analysis of shotgun proteomics data.
MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd., Anal. Chem. 75(24), 2003
PMID: 14670053
Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources.
Koch DJ, Ruckert C, Rey DA, Mix A, Puhler A, Kalinowski J., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204527
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation.
Pan C, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC, Hurst GB, Pelletier DA, Samatova NF, Hettich RL., Anal. Chem. 78(20), 2006
PMID: 17037911
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium glutamicum: identification of the corresponding gene and impact on L-glutamate production.
Trotschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Kramer R, Burkovski A., Appl. Microbiol. Biotechnol. 60(6), 2002
PMID: 12664155
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395

Hänßler, 2008
The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis.
Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L., J. Bacteriol. 189(14), 2007
PMID: 17483212
Ultrasensitive fluorescence protein detection in isoelectric focusing gels using a ruthenium metal chelate stain.
Steinberg TH, Chernokalskaya E, Berggren K, Lopez MF, Diwu Z, Haugland RP, Patton WF., Electrophoresis 21(3), 2000
PMID: 10726748
Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum.
Ozcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Kramer R., J. Bacteriol. 189(20), 2007
PMID: 17693504

Frunzke, 2008
High-salinity-induced iron limitation in Bacillus subtilis.
Hoffmann T, Schutz A, Brosius M, Volker A, Volker U, Bremer E., J. Bacteriol. 184(3), 2002
PMID: 11790741
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O., J. Biotechnol. 98(2-3), 2002
PMID: 12141991
Functional analysis of sigH expression in Corynebacterium glutamicum.
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 331(4), 2005
PMID: 15883048

Rückert, 2008
Purification and characterization of O-Acetylserine sulfhydrylase of Corynebacterium glutamicum.
Wada M, Awano N, Yamazawa H, Takagi H, Nakamori S., Biosci. Biotechnol. Biochem. 68(7), 2004
PMID: 15277766
The regulation of L-methionine synthesis and the properties of cystathionine-γ-synthase and β-cystathionase in Corynebacterium glutamicum
Kase, Agr. Biol. Chem. 38(), 1974
Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor.
Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ, Hu WS., PLoS ONE 3(5), 2008
PMID: 18461186
Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.
Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M., Mol. Cell Proteomics 7(2), 2007
PMID: 17938405
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19950167
PubMed | Europe PMC

Suchen in

Google Scholar