Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions

Peter E, Rothbart M, Oelze M-L, Shalygo N, Dietz K-J, Grimm B (2010)
PLANT AND CELL PHYSIOLOGY 51(7): 1229-1241.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Peter, Enrico; Rothbart, Maxi; Oelze, Marie-LuiseUniBi; Shalygo, Nikolai; Dietz, Karl-JosefUniBi; Grimm, Bernhard
Abstract / Bemerkung
Mg protoporphyrin monomethylester (MgProtoME) cyclase catalyzes isocyclic ring formation to form divinyl protochlorophyllide. The CHL27 protein is part of the cyclase complex. Deficiency of CHL27 has been previously reported to compromise photosynthesis and nuclear gene expression. In a comprehensive analysis of different CHL27 antisense tobacco lines grown under different light conditions, the physiological consequences of gradually reduced CHL27 expression on the tetrapyrrole biosynthetic pathway were explored. Excessive amounts of MgProtoME, the substrate of the cyclase reaction, accumulated in response to the reduced CHL27 content. Moreover, 5-aminolevulinic acid (ALA) synthesis, Mg chelatase and Mg protoporphyrin methyltransferase activities were reduced in transgenic plants. Compared with growth under continuous light exposure, the CHL27-deficient plants showed a stronger reduction in Chl content, cell death and leaf necrosis during diurnal light/dark cycles. This photooxidative phenotype correlated with a rapidly increasing MgProtoME steady-state level at the beginning of each light period. In contrast, the same transformants grown under continuous light exposure possessed a permanently elevated amount of MgProtoME. Its lower phototoxicity correlated with increased activities of ascorbate peroxidase and catalase, and a higher amount of reduced ascorbate. It is proposed that improved stress acclimation during continuous light in comparison with light-dark growth increases the capacity to prevent photo-oxidation by excess tetrapyrrole precursors and lowers the susceptibility to secondary photodynamic damage.
Stichworte
Chlorophyll; Photooxidation; Photosensitization; Tetrapyrrole biosynthesis; Tobacco; Mg protoporphyrin monomethylester cyclase
Erscheinungsjahr
2010
Zeitschriftentitel
PLANT AND CELL PHYSIOLOGY
Band
51
Ausgabe
7
Seite(n)
1229-1241
ISSN
0032-0781
eISSN
1471-9053
Page URI
https://pub.uni-bielefeld.de/record/1794568

Zitieren

Peter E, Rothbart M, Oelze M-L, Shalygo N, Dietz K-J, Grimm B. Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions. PLANT AND CELL PHYSIOLOGY. 2010;51(7):1229-1241.
Peter, E., Rothbart, M., Oelze, M. - L., Shalygo, N., Dietz, K. - J., & Grimm, B. (2010). Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions. PLANT AND CELL PHYSIOLOGY, 51(7), 1229-1241. https://doi.org/10.1093/pcp/pcq071
Peter, Enrico, Rothbart, Maxi, Oelze, Marie-Luise, Shalygo, Nikolai, Dietz, Karl-Josef, and Grimm, Bernhard. 2010. “Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions”. PLANT AND CELL PHYSIOLOGY 51 (7): 1229-1241.
Peter, E., Rothbart, M., Oelze, M. - L., Shalygo, N., Dietz, K. - J., and Grimm, B. (2010). Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions. PLANT AND CELL PHYSIOLOGY 51, 1229-1241.
Peter, E., et al., 2010. Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions. PLANT AND CELL PHYSIOLOGY, 51(7), p 1229-1241.
E. Peter, et al., “Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions”, PLANT AND CELL PHYSIOLOGY, vol. 51, 2010, pp. 1229-1241.
Peter, E., Rothbart, M., Oelze, M.-L., Shalygo, N., Dietz, K.-J., Grimm, B.: Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions. PLANT AND CELL PHYSIOLOGY. 51, 1229-1241 (2010).
Peter, Enrico, Rothbart, Maxi, Oelze, Marie-Luise, Shalygo, Nikolai, Dietz, Karl-Josef, and Grimm, Bernhard. “Mg Protoporphyrin Monomethylester Cyclase Deficiency and Effects on Tetrapyrrole Metabolism in Different Light Conditions”. PLANT AND CELL PHYSIOLOGY 51.7 (2010): 1229-1241.

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overexpression of an EaZIP gene devoid of transit peptide sequence induced leaf variegation in tobacco.
Guan X, Li Z, Zhang Z, Wei X, Xie J, Chen J, Chen Q., PLoS One 12(4), 2017
PMID: 28422996
Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts.
Fujii S, Kobayashi K, Nagata N, Masuda T, Wada H., Plant Physiol 174(4), 2017
PMID: 28655777
The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice.
Kong W, Yu X, Chen H, Liu L, Xiao Y, Wang Y, Wang C, Lin Y, Yu Y, Wang C, Jiang L, Zhai H, Zhao Z, Wan J., Plant Mol Biol 92(1-2), 2016
PMID: 27514852
Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp. Strain PCC 6803.
Kopečná J, Pilný J, Krynická V, Tomčala A, Kis M, Gombos Z, Komenda J, Sobotka R., Plant Physiol 169(2), 2015
PMID: 26269547
Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network.
Luo T, Luo S, Araújo WL, Schlicke H, Rothbart M, Yu J, Fan T, Fernie AR, Grimm B, Luo M., Plant Physiol Biochem 65(), 2013
PMID: 23416492
Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis.
Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamäki E, Grimm B., Plant Physiol 162(1), 2013
PMID: 23569108
Loss of the plastid envelope protein AtLrgB causes spontaneous chlorotic cell death in Arabidopsis thaliana.
Yamaguchi M, Takechi K, Myouga F, Imura S, Sato H, Takio S, Shinozaki K, Takano H., Plant Cell Physiol 53(1), 2012
PMID: 22180599
Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803.
Hollingshead S, Kopecná J, Jackson PJ, Canniffe DP, Davison PA, Dickman MJ, Sobotka R, Hunter CN., J Biol Chem 287(33), 2012
PMID: 22711541
LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco.
Albus CA, Salinas A, Czarnecki O, Kahlau S, Rothbart M, Thiele W, Lein W, Bock R, Grimm B, Schöttler MA., Plant Physiol 160(4), 2012
PMID: 23085838
Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.
Czarnecki O, Gläßer C, Chen JG, Mayer KF, Grimm B., Front Plant Sci 3(), 2012
PMID: 23112801
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism.
Balsemão-Pires E, Jaillais Y, Olson BJ, Andrade LR, Umen JG, Chory J, Sachetto-Martins G., BMC Plant Biol 11(), 2011
PMID: 21689410

56 References

Daten bereitgestellt von Europe PubMed Central.

Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling.
Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD., Plant Cell Physiol. 49(9), 2008
PMID: 18682427

AUTHOR UNKNOWN, Planta 222(), 2005
Protoheme turnover and chlorophyll synthesis in greening barley tissue.
Castelfranco PA, Jones OT., Plant Physiol. 55(3), 1975
PMID: 16659107
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes.
Heiber I, Stroher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M., Plant Physiol. 143(4), 2007
PMID: 17337533

AUTHOR UNKNOWN, Plant Sci. 66(), 1992

AUTHOR UNKNOWN, Science 228(), 1985
Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses.
Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E., Biochem. J. 412(2), 2008
PMID: 18318659
No single way to understand singlet oxygen signalling in plants.
Kim C, Meskauskiene R, Apel K, Laloi C., EMBO Rep. 9(5), 2008
PMID: 18451767
Circadian rhythms of the L-ascorbic acid level in Euglena and spinach.
Kiyota M, Numayama N, Goto K., J. Photochem. Photobiol. B, Biol. 84(3), 2006
PMID: 16679025
Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide.
Kubo A, Saji H, Tanaka K, Kondo N., Plant Mol. Biol. 29(3), 1995
PMID: 8534847
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.
Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K., Proc. Natl. Acad. Sci. U.S.A. 104(2), 2006
PMID: 17197417

AUTHOR UNKNOWN, Plant Physiol. 102(), 1989
Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis.
Lepisto A, Kangasjarvi S, Luomala EM, Brader G, Sipari N, Keranen M, Keinanen M, Rintamaki E., Plant Physiol. 149(3), 2009
PMID: 19151130
NTZIP antisense plants show reduced chlorophyll levels.
Liu N, Yang YT, Liu HH, Yang GD, Zhang NH, Zheng CC., Plant Physiol. Biochem. 42(4), 2004
PMID: 15120117
Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system.
Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T., Plant Physiol. 135(4), 2004
PMID: 15326282
Regulation of catalases in Arabidopsis.
McClung CR., Free Radic. Biol. Med. 23(3), 1997
PMID: 9214587

AUTHOR UNKNOWN, Proc. Natl. Acad. Sci. U.S.A. 98(), 2000
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis.
Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A., Proc. Natl. Acad. Sci. U.S.A. 105(39), 2008
PMID: 18818313
Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation.
Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S., Plant Cell 14(3), 2002
PMID: 11910013

Nakano, Plant Cell Physiol. 22(5), 1981
Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea).
Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K., J. Plant Physiol. 160(9), 2003
PMID: 14593810
Plastid-to-nucleus retrograde signaling.
Nott A, Jung HS, Koussevitzky S, Chory J., Annu Rev Plant Biol 57(), 2006
PMID: 16669780
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K., Plant Cell 15(10), 2003
PMID: 14508004

AUTHOR UNKNOWN, Planta 208(), 1999
Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway.
Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B., Plant Physiol. 122(4), 2000
PMID: 10759511
Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants.
Papenbrock J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B., Plant J. 28(1), 2001
PMID: 11696185

AUTHOR UNKNOWN, J. Plant Physiol. 153(), 1998
Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis.
Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M., Proc. Natl. Acad. Sci. U.S.A. 102(16), 2005
PMID: 15824317
Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis.
Shalygo N, Czarnecki O, Peter E, Grimm B., Plant Mol. Biol. 71(4-5), 2009
PMID: 19680747
NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase.
Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz KJ, Jensen PE., FEBS Lett. 582(18), 2008
PMID: 18625226
Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX.
Strand A, Asami T, Alonso J, Ecker JR, Chory J., Nature 421(6918), 2003
PMID: 12511958
Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide.
Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE., Proc. Natl. Acad. Sci. U.S.A. 100(26), 2003
PMID: 14673103
Singlet oxygen in plants: production, detoxification and signaling.
Triantaphylides C, Havaux M., Trends Plant Sci. 14(4), 2009
PMID: 19303348
The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence.
Walker CJ, Mansfield KE, Rezzano IN, Hanamoto CM, Smith KM, Castelfranco PA., Biochem. J. 255(2), 1988
PMID: 3202840
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20460500
PubMed | Europe PMC

Suchen in

Google Scholar