Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts

Pulido P, Cristina Spinola M, Kirchsteiger K, Guinea M, Belen Pascual M, Sahrawy M, Maria Sandalio L, Dietz K-J, Gonzalez M, Javier Cejudo F (2010)
JOURNAL OF EXPERIMENTAL BOTANY 61(14): 4043-4054.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Pulido, Pablo; Cristina Spinola, Maria; Kirchsteiger, Kerstin; Guinea, Manuel; Belen Pascual, Maria; Sahrawy, Mariam; Maria Sandalio, Luisa; Dietz, Karl-JosefUniBi; Gonzalez, Maricruz; Javier Cejudo, Francisco
Abstract / Bemerkung
Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted delta 2cp) with < 5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and delta 2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO2 fixation, and F-v/F-m, indicating additional functions of NTRC.
Stichworte
oxidative stress; Chloroplast; peroxiredoxin; thioredoxin
Erscheinungsjahr
2010
Zeitschriftentitel
JOURNAL OF EXPERIMENTAL BOTANY
Band
61
Ausgabe
14
Seite(n)
4043-4054
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/1793927

Zitieren

Pulido P, Cristina Spinola M, Kirchsteiger K, et al. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY. 2010;61(14):4043-4054.
Pulido, P., Cristina Spinola, M., Kirchsteiger, K., Guinea, M., Belen Pascual, M., Sahrawy, M., Maria Sandalio, L., et al. (2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY, 61(14), 4043-4054. https://doi.org/10.1093/jxb/erq218
Pulido, Pablo, Cristina Spinola, Maria, Kirchsteiger, Kerstin, Guinea, Manuel, Belen Pascual, Maria, Sahrawy, Mariam, Maria Sandalio, Luisa, Dietz, Karl-Josef, Gonzalez, Maricruz, and Javier Cejudo, Francisco. 2010. “Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts”. JOURNAL OF EXPERIMENTAL BOTANY 61 (14): 4043-4054.
Pulido, P., Cristina Spinola, M., Kirchsteiger, K., Guinea, M., Belen Pascual, M., Sahrawy, M., Maria Sandalio, L., Dietz, K. - J., Gonzalez, M., and Javier Cejudo, F. (2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 61, 4043-4054.
Pulido, P., et al., 2010. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY, 61(14), p 4043-4054.
P. Pulido, et al., “Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts”, JOURNAL OF EXPERIMENTAL BOTANY, vol. 61, 2010, pp. 4043-4054.
Pulido, P., Cristina Spinola, M., Kirchsteiger, K., Guinea, M., Belen Pascual, M., Sahrawy, M., Maria Sandalio, L., Dietz, K.-J., Gonzalez, M., Javier Cejudo, F.: Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY. 61, 4043-4054 (2010).
Pulido, Pablo, Cristina Spinola, Maria, Kirchsteiger, Kerstin, Guinea, Manuel, Belen Pascual, Maria, Sahrawy, Mariam, Maria Sandalio, Luisa, Dietz, Karl-Josef, Gonzalez, Maricruz, and Javier Cejudo, Francisco. “Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts”. JOURNAL OF EXPERIMENTAL BOTANY 61.14 (2010): 4043-4054.

81 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness.
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM., Front Plant Sci 10(), 2019
PMID: 31019520
Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.
Nikkanen L, Rintamäki E., Biochem J 476(7), 2019
PMID: 30988137
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid Redox Signal 28(7), 2018
PMID: 28594234
Crystal structure of Arabidopsis thaliana peroxiredoxin A C119S mutant.
Yang Y, Cai W, Wang J, Pan W, Liu L, Wang M, Zhang M., Acta Crystallogr F Struct Biol Commun 74(pt 10), 2018
PMID: 30279313
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system.
Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro EM, Rintamäki E., Plant Direct 2(11), 2018
PMID: 31245694
The Unprecedented Versatility of the Plant‎ Thioredoxin System.
Geigenberger P, Thormählen I, Daloso DM, Fernie AR., Trends Plant Sci 22(3), 2017
PMID: 28139457
Glutathionylation of Pea Chloroplast 2-Cys Prx and Mitochondrial Prx IIF Affects Their Structure and Peroxidase Activity and Sulfiredoxin Deglutathionylates Only the 2-Cys Prx.
Calderón A, Lázaro-Payo A, Iglesias-Baena I, Camejo D, Lázaro JJ, Sevilla F, Jiménez A., Front Plant Sci 8(), 2017
PMID: 28197170
NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development.
Ojeda V, Pérez-Ruiz JM, González M, Nájera VA, Sahrawy M, Serrato AJ, Geigenberger P, Cejudo FJ., Plant Physiol 174(3), 2017
PMID: 28500266
Photosynthetic activity of cotyledons is critical during post-germinative growth and seedling establishment.
Ojeda V, Nájera VA, González M, Pérez-Ruiz JM, Cejudo FJ., Plant Signal Behav 12(9), 2017
PMID: 28692378
Chloroplast thioredoxin systems: prospects for improving photosynthesis.
Nikkanen L, Toivola J, Diaz MG, Rintamäki E., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808108
Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk.
Tognetti VB, Bielach A, Hrtyan M., Plant Cell Environ 40(11), 2017
PMID: 28708264
NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.
Pérez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ., Proc Natl Acad Sci U S A 114(45), 2017
PMID: 29078290
Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.
Cerveau D, Ouahrani D, Marok MA, Blanchard L, Rey P., Plant Cell Environ 39(1), 2016
PMID: 26138759
The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis.
Naranjo B, Mignée C, Krieger-Liszkay A, Hornero-Méndez D, Gallardo-Guerrero L, Cejudo FJ, Lindahl M., Plant Cell Environ 39(4), 2016
PMID: 26476233
Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis.
Nikkanen L, Toivola J, Rintamäki E., Plant Cell Environ 39(8), 2016
PMID: 26831830
Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome.
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P., Plant Sci 252(), 2016
PMID: 27717466
Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance.
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT., Plant Physiol 172(3), 2016
PMID: 27634426
GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling.
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P., Front Plant Sci 7(), 2016
PMID: 27713755
Selective silencing of 2Cys and type-IIB Peroxiredoxins discloses their roles in cell redox state and stress signaling.
Vidigal P, Martin-Hernandez AM, Guiu-Aragonés C, Amâncio S, Carvalho L., J Integr Plant Biol 57(6), 2015
PMID: 25319151
Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response.
Xu J, Lan H, Fang H, Huang X, Zhang H, Huang J., PLoS One 10(3), 2015
PMID: 25793471
Site-directed mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions.
Lee EM, Lee SS, Tripathi BN, Jung HS, Cao GP, Lee Y, Singh S, Hong SH, Lee KW, Lee SY, Cho JY, Chung BY., Ann Bot 116(4), 2015
PMID: 26141131
Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light.
Litthauer S, Battle MW, Lawson T, Jones MA., Plant J 83(6), 2015
PMID: 26215041
An additional cysteine in a typical 2-Cys peroxiredoxin of Pseudomonas promotes functional switching between peroxidase and molecular chaperone.
An BC, Lee SS, Jung HS, Kim JY, Lee Y, Lee KW, Lee SY, Tripathi BN, Chung BY., FEBS Lett 589(19 pt b), 2015
PMID: 26278368
Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions.
Nikkanen L, Rintamäki E., Philos Trans R Soc Lond B Biol Sci 369(1640), 2014
PMID: 24591711
Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling.
Schlicke H, Hartwig AS, Firtzlaff V, Richter AS, Glässer C, Maier K, Finkemeier I, Grimm B., Mol Plant 7(7), 2014
PMID: 24658417
Identification and functional analysis of peroxiredoxin isoforms in Euglena gracilis.
Tamaki S, Maruta T, Sawa Y, Shigeoka S, Ishikawa T., Biosci Biotechnol Biochem 78(4), 2014
PMID: 25036955
Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x.
Bernal-Bayard P, Ojeda V, Hervás M, Cejudo FJ, Navarro JA, Velázquez-Campoy A, Pérez-Ruiz JM., FEBS Lett 588(23), 2014
PMID: 25448674
A cystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development.
Jung KW, Kim YY, Yoo KS, Ok SH, Cui MH, Jeong BC, Yoo SD, Jeung JU, Shin JS., Plant Cell Physiol 54(2), 2013
PMID: 23220733
Kaede for detection of protein oligomerization.
Wolf H, Barisas BG, Dietz KJ, Seidel T., Mol Plant 6(5), 2013
PMID: 23430050
Bioanalysis of eukaryotic organelles.
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MD, Arriaga EA., Chem Rev 113(4), 2013
PMID: 23570618
Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis.
Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamäki E, Grimm B., Plant Physiol 162(1), 2013
PMID: 23569108
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
König J, Galliardt H, Jütte P, Schäper S, Dittmann L, Dietz KJ., J Exp Bot 64(11), 2013
PMID: 23828546
Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.
Puerto-Galán L, Pérez-Ruiz JM, Ferrández J, Cano B, Naranjo B, Nájera VA, González M, Lindahl AM, Cejudo FJ., Front Plant Sci 4(), 2013
PMID: 23967002
Thiol-based redox signaling in the nitrogen-fixing symbiosis.
Frendo P, Matamoros MA, Alloing G, Becana M., Front Plant Sci 4(), 2013
PMID: 24133498
Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.
Toivola J, Nikkanen L, Dahlström KM, Salminen TA, Lepistö A, Vignols HF, Rintamäki E., Front Plant Sci 4(), 2013
PMID: 24115951
Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives.
Traverso JA, Pulido A, Rodríguez-García MI, Alché JD., Front Plant Sci 4(), 2013
PMID: 24294217
Plastid thioredoxins: a "one-for-all" redox-signaling system in plants.
Serrato AJ, Fernández-Trijueque J, Barajas-López JD, Chueca A, Sahrawy M., Front Plant Sci 4(), 2013
PMID: 24319449
Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.
Lázaro JJ, Jiménez A, Camejo D, Iglesias-Baena I, Martí Mdel C, Lázaro-Payo A, Barranco-Medina S, Sevilla F., Front Plant Sci 4(), 2013
PMID: 24348485
Glutathione in plants: an integrated overview.
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH., Plant Cell Environ 35(2), 2012
PMID: 21777251
Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.
Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R., J Exp Bot 63(3), 2012
PMID: 22140244
Post-translational redox modification of ADP-glucose pyrophosphorylase in response to light is not a major determinant of fine regulation of transitory starch accumulation in Arabidopsis leaves.
Li J, Almagro G, Muñoz FJ, Baroja-Fernández E, Bahaji A, Montero M, Hidalgo M, Sánchez-López AM, Ezquer I, Sesma MT, Pozueta-Romero J., Plant Cell Physiol 53(2), 2012
PMID: 22210900
NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis.
Ishiga Y, Ishiga T, Wangdi T, Mysore KS, Uppalapati SR., Mol Plant Microbe Interact 25(3), 2012
PMID: 22112219
Atypical thioredoxins in poplar: the glutathione-dependent thioredoxin-like 2.1 supports the activity of target enzymes possessing a single redox active cysteine.
Chibani K, Tarrago L, Gualberto JM, Wingsle G, Rey P, Jacquot JP, Rouhier N., Plant Physiol 159(2), 2012
PMID: 22523226
Peroxiredoxins are conserved markers of circadian rhythms.
Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O'Neill JS, Reddy AB., Nature 485(7399), 2012
PMID: 22622569
The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling.
Cejudo FJ, Ferrández J, Cano B, Puerto-Galán L, Guinea M., FEBS Lett 586(18), 2012
PMID: 22796111
Retrograde signaling from functionally heterogeneous plastids.
Lepistö A, Toivola J, Nikkanen L, Rintamäki E., Front Plant Sci 3(), 2012
PMID: 23267363
A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria.
Pascual MB, Mata-Cabana A, Florencio FJ, Lindahl M, Cejudo FJ., Plant Physiol 155(4), 2011
PMID: 21335525
Biochemical properties of poplar thioredoxin z.
Chibani K, Tarrago L, Schürmann P, Jacquot JP, Rouhier N., FEBS Lett 585(7), 2011
PMID: 21385584
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid Redox Signal 15(4), 2011
PMID: 21194355
Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.
Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M., Plant Physiol 156(3), 2011
PMID: 21562331
Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV.
Li J, Ezquer I, Bahaji A, Montero M, Ovecka M, Baroja-Fernández E, Muñoz FJ, Mérida A, Almagro G, Hidalgo M, Sesma MT, Pozueta-Romero J., Mol Plant Microbe Interact 24(10), 2011
PMID: 21649509

62 References

Daten bereitgestellt von Europe PubMed Central.

Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds.
Alkhalfioui F, Renard M, Vensel WH, Wong J, Tanaka CK, Hurkman WJ, Buchanan BB, Montrichard F., Plant Physiol. 144(3), 2007
PMID: 17513483
Genome-wide insertional mutagenesis of Arabidopsis thaliana.
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR., Science 301(5633), 2003
PMID: 12893945
The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M., J. Biol. Chem. 278(26), 2003
PMID: 12707279
Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type.
Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E., Plant Physiol. 136(4), 2004
PMID: 15531707
The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation.
Dietz KJ, Horling F, Konig J, Baier M., J. Exp. Bot. 53(372), 2002
PMID: 11997378
Plant peroxiredoxins.
Dietz KJ., Annu Rev Plant Biol 54(), 2003
PMID: 14502986
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance.
Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC, Gotor C., J. Biol. Chem. 276(12), 2000
PMID: 11121418
Redox regulation in photosynthetic organisms: signalling, acclimation, and practical implications
Foyer CH, Noctor G., 2009
Measurement of reduced, oxidized and total ascorbate content in plants.
Gillespie KM, Ainsworth EA., Nat Protoc 2(4), 2007
PMID: 17446888
Typical 2-Cys peroxiredoxins--structures, mechanisms and functions.
Hall A, Karplus PA, Poole LB., FEBS J. 276(9), 2009
PMID: 19476488
Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana.
Havaux M, Eymery F, Porfirova S, Rey P, Dormann P., Plant Cell 17(12), 2005
PMID: 16258032
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses.
Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E., Biochem. J. 412(2), 2008
PMID: 18318659
No single way to understand singlet oxygen signalling in plants.
Kim C, Meskauskiene R, Apel K, Laloi C., EMBO Rep. 9(5), 2008
PMID: 18451767
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox hierarchy of photosynthetic electron flux
König J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz K-J., 2002
Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure.
Konig J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz KJ., J. Biol. Chem. 278(27), 2003
PMID: 12702727
Tocopherol as singlet oxygen scavenger in photosystem II.
Kruk J, Hollander-Czytko H, Oettmeier W, Trebst A., J. Plant Physiol. 162(7), 2005
PMID: 16008099
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii.
Ledford HK, Chin BL, Niyogi KK., Eukaryotic Cell 6(6), 2007
PMID: 17435007
Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis.
Lepisto A, Kangasjarvi S, Luomala EM, Brader G, Sipari N, Keranen M, Keinanen M, Rintamaki E., Plant Physiol. 149(3), 2009
PMID: 19151130
Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents
Lichtenthaler HK, Wellburn AR., 1983
Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress.
Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S., Plant Cell Physiol. 51(2), 2009
PMID: 20007290
NTRC links built in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts
Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P., 2009
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts.
Moon JC, Jang HH, Chae HB, Lee JR, Lee SY, Jung YJ, Shin MR, Lim HS, Chung WS, Yun DJ, Lee KO, Lee SY., Biochem. Biophys. Res. Commun. 348(2), 2006
PMID: 16884685
Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants.
Mullineaux PM, Karpinski S, Baker NR., Plant Physiol. 141(2), 2006
PMID: 16760486
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses.
Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N., Plant Physiol. 142(4), 2006
PMID: 17071643
The complex architecture of oxygenic photosynthesis
Nelson N, Ben-Shem A., 2004
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K., Plant Cell 15(10), 2003
PMID: 14508004
Isoprenoids: an evolutionary pool for photoprotection.
Penuelas J, Munne-Bosch S., Trends Plant Sci. 10(4), 2005
PMID: 15817417
The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive.
Perez-Ruiz JM, Gonzalez M, Spinola MC, Sandalio LM, Cejudo FJ., Mol Plant 2(3), 2009
PMID: 19825629
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome.
Petersson UA, Kieselbach T, Garcia-Cerdan JG, Schroder WP., FEBS Lett. 580(26), 2006
PMID: 17054949
Reactive oxygen species signaling in plants
Pitzschke A, Forzani C, Hirt H., 2006
Dynamics of photosynthesis in fluctuating light.
Rascher U, Nedbal L., Curr. Opin. Plant Biol. 9(6), 2006
PMID: 17011815
Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses.
Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M., Plant J. 41(1), 2005
PMID: 15610347
Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways.
Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP., Plant J. 36(5), 2003
PMID: 14617062
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Cadmium causes the oxidative modification of proteins in pea plants
Romero-Puertas MC, Palma JM, Gómez M, del LA, Sandalio LM., 2002
Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes.
Rouhier N, Jacquot JP., Photosyn. Res. 74(3), 2002
PMID: 16245137
Cloning of thioredoxin h reductase and characterization of the thioredoxin reductase–thioredoxin h system from wheat
Serrato AJ, Pérez-Ruiz JM, Cejudo FJ., 2002
Regulation and function of ascorbate peroxidase isoenzymes.
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K., J. Exp. Bot. 53(372), 2002
PMID: 11997377
NTRC new ways of using NADPH in the chloroplast.
Spinola MC, Perez-Ruiz JM, Pulido P, Kirchsteiger K, Guinea M, Gonzalez M, Cejudo FJ., Physiol Plant 133(3), 2008
PMID: 18346073
NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase.
Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz KJ, Jensen PE., FEBS Lett. 582(18), 2008
PMID: 18625226
Unraveling the tapestry of networks involving reactive oxygen species in plants.
Van Breusegem F, Bailey-Serres J, Mittler R., Plant Physiol. 147(3), 2008
PMID: 18612075
The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana.
Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K., Science 306(5699), 2004
PMID: 15539603
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
Wood ZA, Poole LB, Karplus PA., Science 300(5619), 2003
PMID: 12714747
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20616155
PubMed | Europe PMC

Suchen in

Google Scholar