In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons
Dürr V, Egelhaaf M (1999)
Journal of neurophysiology 82(6): 3327-3338.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Abstract / Bemerkung
In this comparative in vivo study of dendritic calcium accumulation, we describe the time course and spatial integration properties of two classes of visual interneurons in the lobula plate of the blowfly. Calcium accumulation was measured during visual motion stimulation, ensuring synaptic activation of the neurons within their natural spatial and temporal operating range. The compared cell classes, centrifugal horizontal (CH) and horizontal system (HS) cells, are known to receive retinotopic input of similar direction selectivity, but to differ in morphology, biophysics, presence of dendrodendritic synapses, and computational task. 1) The time course of motion-induced calcium accumulation was highly invariant with respect to stimulus parameters such as pattern contrast and size. In HS cells, the rise of [Ca2+](i) can be described by a single exponential with a time constant of 5-6 s. The initial rise of [Ca2+](i) in CH cells was much faster (tau approximate to 1 s). The decay time constant in both cell classes was estimated to be at least 3.5 times longer than the corresponding rise time constant. 2) The voltage-[Ca2+](i) relationship was best described by an expansive nonlinearity in HS cells and an approximately linear relationship in CH cells. 3) Both cell classes displayed a size-dependent saturation nonlinearity of the calcium accumulation. Although in CH cells calcium saturation was indistinguishable from saturation of the membrane potential, saturation of the two response parameters differed in HS cells. 4) There was spatial overlap of the calcium signal in response to nonoverlapping visual stimuli. Both the area and the amplitude of the overlap profile was larger in CH cells than in HS cells. Thus calcium accumulation in CH cells is spatially blurred to a greater extent than in HS cells. 5) The described differences between the two cell classes may reflect the following computational tasks of these neurons: CH cells relay retinotopic information within the lobula plate via dendritic synapses with pronounced spatial low-pass filtering. HS cells are output neurons of the lobula plate, in which the slow, local calcium accumulation may be suitable for local modulatory functions.
Stichworte
presynaptic;
membrane;
stimulation;
membrane potential;
neuron;
direction;
direction selectivity;
Signal;
Synapse;
Time constant;
STIMULI;
stimulus;
response;
size;
interneuron;
Morphology;
TIME;
biophysics;
temporal;
CELL;
SYNAPSES;
interneurons;
VISUAL-STIMULI;
Filtering;
TASKS;
TASK;
CELLS;
neurons;
Information;
system;
fura-2;
input;
Intracellular calcium;
HS-Cells;
Lobula plate;
lobula;
CH-Cells;
Calliphora;
fly;
Visual Interneuron;
dendrodendritic;
dendritic integration;
retinotopic;
Dendrite;
ACTIVATION;
calcium
Erscheinungsjahr
1999
Zeitschriftentitel
Journal of neurophysiology
Band
82
Ausgabe
6
Seite(n)
3327-3338
ISSN
0022-3077
Page URI
https://pub.uni-bielefeld.de/record/1784858
Zitieren
Dürr V, Egelhaaf M. In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology. 1999;82(6):3327-3338.
Dürr, V., & Egelhaaf, M. (1999). In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology, 82(6), 3327-3338. https://doi.org/10.1152/jn.1999.82.6.3327
Dürr, Volker, and Egelhaaf, Martin. 1999. “In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons”. Journal of neurophysiology 82 (6): 3327-3338.
Dürr, V., and Egelhaaf, M. (1999). In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology 82, 3327-3338.
Dürr, V., & Egelhaaf, M., 1999. In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology, 82(6), p 3327-3338.
V. Dürr and M. Egelhaaf, “In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons”, Journal of neurophysiology, vol. 82, 1999, pp. 3327-3338.
Dürr, V., Egelhaaf, M.: In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. Journal of neurophysiology. 82, 3327-3338 (1999).
Dürr, Volker, and Egelhaaf, Martin. “In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons”. Journal of neurophysiology 82.6 (1999): 3327-3338.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:57Z
MD5 Prüfsumme
33e0ebda91e907f953d0cce6fd06bcf7
Daten bereitgestellt von European Bioinformatics Institute (EBI)
19 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets.
Kress D, Egelhaaf M., Front Behav Neurosci 8(), 2014
PMID: 25309362
Kress D, Egelhaaf M., Front Behav Neurosci 8(), 2014
PMID: 25309362
Dendritic end inhibition in large-field visual neurons of the fly.
Elyada YM, Haag J, Borst A., J Neurosci 33(8), 2013
PMID: 23426692
Elyada YM, Haag J, Borst A., J Neurosci 33(8), 2013
PMID: 23426692
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol 8(), 2010
PMID: 20384983
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol 8(), 2010
PMID: 20384983
Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior.
Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V., Nat Methods 7(7), 2010
PMID: 20526346
Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V., Nat Methods 7(7), 2010
PMID: 20526346
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr Biol 20(16), 2010
PMID: 20655222
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr Biol 20(16), 2010
PMID: 20655222
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.
Kalb J, Egelhaaf M, Kurtz R., J Neurosci 28(37), 2008
PMID: 18784299
Kalb J, Egelhaaf M, Kurtz R., J Neurosci 28(37), 2008
PMID: 18784299
Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism.
Kurtz R., Neuroscience 146(2), 2007
PMID: 17367948
Kurtz R., Neuroscience 146(2), 2007
PMID: 17367948
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
Kalb J, Nielsen T, Fricke M, Egelhaaf M, Kurtz R., Biochem Biophys Res Commun 316(2), 2004
PMID: 15020223
Kalb J, Nielsen T, Fricke M, Egelhaaf M, Kurtz R., Biochem Biophys Res Commun 316(2), 2004
PMID: 15020223
Ca2+ clearance in visual motion-sensitive neurons of the fly studied in vivo by sensory stimulation and UV photolysis of caged Ca2+.
Kurtz R., J Neurophysiol 92(1), 2004
PMID: 15212443
Kurtz R., J Neurophysiol 92(1), 2004
PMID: 15212443
Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly.
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life.
Kurtz R, Egelhaaf M., Mol Neurobiol 27(1), 2003
PMID: 12668900
Kurtz R, Egelhaaf M., Mol Neurobiol 27(1), 2003
PMID: 12668900
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc Natl Acad Sci U S A 100(19), 2003
PMID: 12947039
Cuntz H, Haag J, Borst A., Proc Natl Acad Sci U S A 100(19), 2003
PMID: 12947039
Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons.
Ogawa H, Baba Y, Oka K., J Neurobiol 50(3), 2002
PMID: 11810638
Ogawa H, Baba Y, Oka K., J Neurobiol 50(3), 2002
PMID: 11810638
Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics.
Dürr V, Kurtz R, Egelhaaf M., J Neurobiol 46(4), 2001
PMID: 11180156
Dürr V, Kurtz R, Egelhaaf M., J Neurobiol 46(4), 2001
PMID: 11180156
Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
Ogawa H, Baba Y, Oka K., J Neurobiol 46(4), 2001
PMID: 11180157
Ogawa H, Baba Y, Oka K., J Neurobiol 46(4), 2001
PMID: 11180157
Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo.
Kurtz R, Dürr V, Egelhaaf M., J Neurophysiol 84(4), 2000
PMID: 11024084
Kurtz R, Dürr V, Egelhaaf M., J Neurophysiol 84(4), 2000
PMID: 11024084
59 References
Daten bereitgestellt von Europe PubMed Central.
Elementary and global aspects of calcium signalling.
Berridge MJ., J. Physiol. (Lond.) 499 ( Pt 2)(), 1997
PMID: 9080360
Berridge MJ., J. Physiol. (Lond.) 499 ( Pt 2)(), 1997
PMID: 9080360
Calcium transport and buffering in neurons.
Blaustein MP., Trends Neurosci. 11(10), 1988
PMID: 2469161
Blaustein MP., Trends Neurosci. 11(10), 1988
PMID: 2469161
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Dendritic processing of synaptic information by sensory interneurons.
Borst A, Egelhaaf M., Trends Neurosci. 17(6), 1994
PMID: 7521087
Borst A, Egelhaaf M., Trends Neurosci. 17(6), 1994
PMID: 7521087
Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons.
Borst A, Egelhaaf M, Haag J., J Comput Neurosci 2(1), 1995
PMID: 8521280
Borst A, Egelhaaf M, Haag J., J Comput Neurosci 2(1), 1995
PMID: 8521280
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties.
Borst A, Haag J., J Comput Neurosci 3(4), 1996
PMID: 9001975
Borst A, Haag J., J Comput Neurosci 3(4), 1996
PMID: 9001975
Imaging calcium dynamics in dendritic spines.
Denk W, Yuste R, Svoboda K, Tank DW., Curr. Opin. Neurobiol. 6(3), 1996
PMID: 8794079
Denk W, Yuste R, Svoboda K, Tank DW., Curr. Opin. Neurobiol. 6(3), 1996
PMID: 8794079
Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons.
Douglass JK, Strausfeld NJ., J. Neurosci. 15(8), 1995
PMID: 7643204
Douglass JK, Strausfeld NJ., J. Neurosci. 15(8), 1995
PMID: 7643204
Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate.
Douglass JK, Strausfeld NJ., J. Neurosci. 16(15), 1996
PMID: 8764644
Douglass JK, Strausfeld NJ., J. Neurosci. 16(15), 1996
PMID: 8764644
Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly.
Douglass JK, Strausfeld NJ., J. Comp. Neurol. 396(1), 1998
PMID: 9623889
Douglass JK, Strausfeld NJ., J. Comp. Neurol. 396(1), 1998
PMID: 9623889
Dürr, Proc. Göttingen Neurobiol. Conf. 25(), 1997
Dürr, Proc. Göttingen Neurobiol. Conf. 26(), 1998
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons.
Egelhaaf M, Borst A., J. Neurosci. 13(11), 1993
PMID: 8229185
Egelhaaf M, Borst A., J. Neurosci. 13(11), 1993
PMID: 8229185
Calcium accumulation in visual interneurons of the fly: stimulus dependence and relationship to membrane potential.
Egelhaaf M, Borst A., J. Neurophysiol. 73(6), 1995
PMID: 7666159
Egelhaaf M, Borst A., J. Neurophysiol. 73(6), 1995
PMID: 7666159
Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
AUTHOR UNKNOWN, 0
Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons.
Gabso M, Neher E, Spira ME., Neuron 18(3), 1997
PMID: 9115740
Gabso M, Neher E, Spira ME., Neuron 18(3), 1997
PMID: 9115740
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Visual orientation behaviour of flies after selective laser beam ablation of interneurones.
Geiger G, Nassel DR., Nature 293(5831), 1981
PMID: 7278992
Geiger G, Nassel DR., Nature 293(5831), 1981
PMID: 7278992
AUTHOR UNKNOWN, 0
Calcium signaling in neurons: molecular mechanisms and cellular consequences.
Ghosh A, Greenberg ME., Science 268(5208), 1995
PMID: 7716515
Ghosh A, Greenberg ME., Science 268(5208), 1995
PMID: 7716515
Synaptic transmission without action potentials: input-output properties of a nonspiking presynaptic neuron.
Graubard K., J. Neurophysiol. 41(4), 1978
PMID: 210264
Graubard K., J. Neurophysiol. 41(4), 1978
PMID: 210264
AUTHOR UNKNOWN, 0
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties.
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Hardie, Prog. Sensory Physiol. 5(), 1982
Calcium signalling: setting store by calcium channels.
Hardie RC., Curr. Biol. 6(11), 1996
PMID: 8939592
Hardie RC., Curr. Biol. 6(11), 1996
PMID: 8939592
Hausen, Z. Naturforsch. 31(), 1976
Hausen, Verh. Dt. Zool. Ges. 1981(), 1981
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics.
Hausen K, Wehrhahn C., J. Neurosci. 9(11), 1989
PMID: 2585057
Hausen K, Wehrhahn C., J. Neurosci. 9(11), 1989
PMID: 2585057
Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions.
Hausen K, Wehrhahn C., J. Neurosci. 10(1), 1990
PMID: 2299398
Hausen K, Wehrhahn C., J. Neurosci. 10(1), 1990
PMID: 2299398
The synaptic organization of visual interneurons in the lobula complex of flies. A light and electron microscopical study using silver-intensified cobalt-impregnations.
Hausen K, Wolburg-Buchholz W, Ribi WA., Cell Tissue Res. 208(3), 1980
PMID: 6156764
Hausen K, Wolburg-Buchholz W, Ribi WA., Cell Tissue Res. 208(3), 1980
PMID: 6156764
AUTHOR UNKNOWN, 0
Neural computation of motion in the fly visual system: quadratic nonlinearity of responses induced by picrotoxin in the HS and CH cells.
Kondoh Y, Hasegawa Y, Okuma J, Takahashi F., J. Neurophysiol. 74(6), 1995
PMID: 8747223
Kondoh Y, Hasegawa Y, Okuma J, Takahashi F., J. Neurophysiol. 74(6), 1995
PMID: 8747223
A dendritic gain control mechanism in axonless neurons of the locust, Schistocerca americana.
Laurent G., J. Physiol. (Lond.) 470(), 1993
PMID: 8308737
Laurent G., J. Physiol. (Lond.) 470(), 1993
PMID: 8308737
Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation.
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1432076
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1432076
Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons.
Markram H, Helm PJ, Sakmann B., J. Physiol. (Lond.) 485 ( Pt 1)(), 1995
PMID: 7658365
Markram H, Helm PJ, Sakmann B., J. Physiol. (Lond.) 485 ( Pt 1)(), 1995
PMID: 7658365
Insect optic lobe neurons identifiable with monoclonal antibodies to GABA.
Meyer EP, Matute C, Streit P, Nassel DR., Histochemistry 84(3), 1986
PMID: 3710830
Meyer EP, Matute C, Streit P, Nassel DR., Histochemistry 84(3), 1986
PMID: 3710830
Second-order neurones and receptor mechanisms in visual- and olfactory-information processing.
Nakanishi S., Trends Neurosci. 18(8), 1995
PMID: 7482799
Nakanishi S., Trends Neurosci. 18(8), 1995
PMID: 7482799
Oertner, Soc. Neurosci. Abstr. 23(), 1997
Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus.
Ogawa H, Baba Y, Oka K., Neurosci. Lett. 219(1), 1996
PMID: 8961294
Ogawa H, Baba Y, Oka K., Neurosci. Lett. 219(1), 1996
PMID: 8961294
Pivovarova, Soc. Neurosci. Abstr. 23(), 1997
Activity-dependent calcium sequestration in dendrites of hippocampal neurons in brain slices.
Pozzo-Miller LD, Pivovarova NB, Leapman RD, Buchanan RA, Reese TS, Andrews SB., J. Neurosci. 17(22), 1997
PMID: 9348342
Pozzo-Miller LD, Pivovarova NB, Leapman RD, Buchanan RA, Reese TS, Andrews SB., J. Neurosci. 17(22), 1997
PMID: 9348342
Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation.
Sah P., Trends Neurosci. 19(4), 1996
PMID: 8658599
Sah P., Trends Neurosci. 19(4), 1996
PMID: 8658599
Single, Soc. Neurosci. Abstr. 23(), 1997
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
AUTHOR UNKNOWN, 0
In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation.
Sobel EC, Tank DW., Science 263(5148), 1994
PMID: 17770837
Sobel EC, Tank DW., Science 263(5148), 1994
PMID: 17770837
Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways.
Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L., J. Comp. Neurol. 361(2), 1995
PMID: 8543664
Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L., J. Comp. Neurol. 361(2), 1995
PMID: 8543664
In vivo dendritic calcium dynamics in neocortical pyramidal neurons.
Svoboda K, Denk W, Kleinfeld D, Tank DW., Nature 385(6612), 1997
PMID: 8990119
Svoboda K, Denk W, Kleinfeld D, Tank DW., Nature 385(6612), 1997
PMID: 8990119
A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement.
Tank DW, Regehr WG, Delaney KR., J. Neurosci. 15(12), 1995
PMID: 8613732
Tank DW, Regehr WG, Delaney KR., J. Neurosci. 15(12), 1995
PMID: 8613732
Calculation of calcium dynamics from single wavelength fura-2 fluorescence recordings.
Vranesic I, Knopfel T., Pflugers Arch. 418(1-2), 1991
PMID: 2041721
Vranesic I, Knopfel T., Pflugers Arch. 418(1-2), 1991
PMID: 2041721
Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques.
Warzecha AK, Egelhaaf M, Borst A., J. Neurophysiol. 69(2), 1993
PMID: 8459270
Warzecha AK, Egelhaaf M, Borst A., J. Neurophysiol. 69(2), 1993
PMID: 8459270
Mobile and immobile calcium buffers in bovine adrenal chromaffin cells.
Zhou Z, Neher E., J. Physiol. (Lond.) 469(), 1993
PMID: 8271200
Zhou Z, Neher E., J. Physiol. (Lond.) 469(), 1993
PMID: 8271200
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 10601464
PubMed | Europe PMC
Suchen in