What mechanisms coordinate leg movement in walking arthropods?

Cruse H (1990)
Trends in Neurosciences 13(1): 15-21.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The construction of artificial walking machines has been a challenging task for engineers for several centuries. Advances in computer technology have stimulated this research in the past two decades, and enormous progress has been made, particularly in recent years. Nevertheless, in comparing the walk of a six-legged robot with the walk of an insect, the immense differences are immediately obvious. The walking of an animal is much more versatile, and seems to be more effective and elegant. Thus it is useful to consider the corresponding biological mechanisms in order to apply these or similar mechanisms to the control of walking legs in machines. Until recently, little information on this paper summarizes recent developments.
Stick Insect; Walking; Crayfish; Leg movement; leg; MECHANISM; MECHANISMS; movement; Arthropod; Leg coordination
Trends in Neurosciences
Page URI


Cruse H. What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences. 1990;13(1):15-21.
Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences, 13(1), 15-21. https://doi.org/10.1016/0166-2236(90)90057-H
Cruse, Holk. 1990. “What mechanisms coordinate leg movement in walking arthropods?”. Trends in Neurosciences 13 (1): 15-21.
Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15-21.
Cruse, H., 1990. What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences, 13(1), p 15-21.
H. Cruse, “What mechanisms coordinate leg movement in walking arthropods?”, Trends in Neurosciences, vol. 13, 1990, pp. 15-21.
Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences. 13, 15-21 (1990).
Cruse, Holk. “What mechanisms coordinate leg movement in walking arthropods?”. Trends in Neurosciences 13.1 (1990): 15-21.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

100 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Metastability of the Double-Tripod Gait in Locust Locomotion.
Reches E, Knebel D, Rillich J, Ayali A, Barzel B., iScience 12(), 2019
PMID: 30677739
The manifold structure of limb coordination in walking Drosophila.
DeAngelis BD, Zavatone-Veth JA, Clark DA., Elife 8(), 2019
PMID: 31250807
Topology optimization and 3D printing of multimaterial magnetic actuators and displays.
Sundaram S, Skouras M, Kim DS, van den Heuvel L, Matusik W., Sci Adv 5(7), 2019
PMID: 31309144
Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
Szczecinski NS, Quinn RD., Biol Cybern 112(1-2), 2018
PMID: 28782078
Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
Yeldesbay A, Tóth T, Daun S., J Comput Neurosci 44(3), 2018
PMID: 29589252
Kinematic patterns while walking on a slope at different speeds.
Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA., J Appl Physiol (1985) 125(2), 2018
PMID: 29698109
Neuropeptides in the desert ant Cataglyphis fortis: Mass spectrometric analysis, localization, and age-related changes.
Schmitt F, Vanselow JT, Schlosser A, Wegener C, Rössler W., J Comp Neurol 525(4), 2017
PMID: 27580025
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Climbing favours the tripod gait over alternative faster insect gaits.
Ramdya P, Thandiackal R, Cherney R, Asselborn T, Benton R, Ijspeert AJ, Floreano D., Nat Commun 8(), 2017
PMID: 28211509
Neurophysiology and neural engineering: a review.
Prochazka A., J Neurophysiol 118(2), 2017
PMID: 28566462
A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach.
Owaki D, Goda M, Miyazawa S, Ishiguro A., Front Neurorobot 11(), 2017
PMID: 28649197
Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
Mantziaris C, Bockemühl T, Holmes P, Borgmann A, Daun S, Büschges A., J Neurophysiol 118(4), 2017
PMID: 28724783
Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
Aoi S, Manoonpong P, Ambe Y, Matsuno F, Wörgötter F., Front Neurorobot 11(), 2017
PMID: 28878645
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Advantage of straight walk instability in turning maneuver of multilegged locomotion: a robotics approach.
Aoi S, Tanaka T, Fujiki S, Funato T, Senda K, Tsuchiya K., Sci Rep 6(), 2016
PMID: 27444746
Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila.
Berendes V, Zill SN, Büschges A, Bockemühl T., J Exp Biol 219(pt 23), 2016
PMID: 27688052
Intersegmental coupling and recovery from perturbations in freely running cockroaches.
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P., J Exp Biol 218(pt 2), 2015
PMID: 25609786
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Robotics and neuroscience.
Floreano D, Ijspeert AJ, Schaal S., Curr Biol 24(18), 2014
PMID: 25247370
A neuromechanical model for the neuronal basis of curve walking in the stick insect.
Knops S, Tóth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S., J Neurophysiol 109(3), 2013
PMID: 23136343
A laser-supported lowerable surface setup to study the role of ground contact during stepping.
Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M., J Neurosci Methods 215(2), 2013
PMID: 23562598
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
A neuromechanical model explaining forward and backward stepping in the stick insect.
Tóth TI, Knops S, Daun-Gruhn S., J Neurophysiol 107(12), 2012
PMID: 22402652
Active tactile exploration for adaptive locomotion in the stick insect.
Schütz C, Dürr V., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969681
A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry.
Spardy LE, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, Rubin JE., J Neural Eng 8(6), 2011
PMID: 22058275
Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
Borgmann A, Toth TI, Gruhn M, Daun-Gruhn S, Büschges A., Biol Cybern 105(5-6), 2011
PMID: 22290138
Visual targeting of forelimbs in ladder-walking locusts.
Niven JE, Buckingham CJ, Lumley S, Cuttle MF, Laughlin SB., Curr Biol 20(1), 2010
PMID: 20036539
Controlling a system with redundant degrees of freedom: transition from standing to walking.
Jérémy L., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(5), 2009
PMID: 19229542
Neurobiology: reconstructing the neural control of leg coordination.
Zill SN, Keller BR., Curr Biol 19(9), 2009
PMID: 19439260
Control of stepping velocity in the stick insect Carausius morosus.
Gruhn M, von Uckermann G, Westmark S, Wosnitza A, Büschges A, Borgmann A., J Neurophysiol 102(2), 2009
PMID: 19535483
Organizing network action for locomotion: insights from studying insect walking.
Büschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2008
PMID: 17888515
Motor pattern selection by combinatorial code of interneuronal pathways.
Stein W, Straub O, Ausborn J, Mader W, Wolf H., J Comput Neurosci 25(3), 2008
PMID: 18425570
Towards a general neural controller for quadrupedal locomotion.
Maufroy C, Kimura H, Takase K., Neural Netw 21(4), 2008
PMID: 18490136
Controlling a system with redundant degrees of freedom. I. Torque distribution in still standing stick insects.
Lévy J, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(8), 2008
PMID: 18642005
Regulation of motor pattern frequency by reversals in proprioceptive feedback.
Smarandache CR, Daur N, Hedrich UB, Stein W., Eur J Neurosci 28(3), 2008
PMID: 18702718
Insect walking is based on a decentralized architecture revealing a simple and robust controller.
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ., Bioinspir Biomim 2(1), 2007
PMID: 17671322
Evidence of force exchanges during the six-legged walking of the bottom-dwelling fish, Chelidonichthys lucerna.
Jamon M, Renous S, Gasc JP, Bels V, Davenport J., J Exp Zool A Ecol Genet Physiol 307(9), 2007
PMID: 17620306
Functional recovery following manipulation of muscles and sense organs in the stick insect leg.
Bässler U, Wolf H, Stein W., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(11), 2007
PMID: 17876584
Coordination of fore and hind leg stepping in cats on a transversely-split treadmill.
Akay T, McVea DA, Tachibana A, Pearson KG., Exp Brain Res 175(2), 2006
PMID: 16733696
Natural neural output that produces highly variable locomotory movements.
Hooper SL, Guschlbauer C, von Uckermann G, Büschges A., J Neurophysiol 96(4), 2006
PMID: 16775206
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(10), 2006
PMID: 16830135
Dynamic coordination between robots: self-organized timing selection in a juggling-like ball-passing task.
Hirai H, Miyazaki F., IEEE Trans Syst Man Cybern B Cybern 36(4), 2006
PMID: 16903361
Experiments and models of sensorimotor interactions during locomotion.
Frigon A, Rossignol S., Biol Cybern 95(6), 2006
PMID: 17115216
Intersegmental coordination of walking movements in stick insects.
Ludwar BCh, Göritz ML, Schmidt J., J Neurophysiol 93(3), 2005
PMID: 15525808
Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
Ludwar BCh, Westmark S, Büschges A, Schmidt J., J Neurophysiol 94(4), 2005
PMID: 16000520
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
Mu L, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(11), 2005
PMID: 16258746
Insect walking and robotics.
Delcomyn F., Annu Rev Entomol 49(), 2004
PMID: 14651456
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Bläsing B, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(3), 2004
PMID: 14735308
Arthropod locomotion systems: from biological materials and systems to robotics.
Ritzmann RE, Gorb S, Quinn RD., Arthropod structure & development. 33(3), 2004
PMID: IND43653712
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
Ritzmann RE, Quinn RD, Fischer MS., Arthropod structure & development. 33(3), 2004
PMID: IND43653738
Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring.
del Río E, Makarov VA, Velarde MG, Ebeling W., Phys Rev E Stat Nonlin Soft Matter Phys 67(5 pt 2), 2003
PMID: 12786251
The central complex and the genetic dissection of locomotor behaviour.
Strauss R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490252
Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
Fischer H, Schmidt J, Haas R, Büschges A., J Neurophysiol 85(1), 2001
PMID: 11152734
How does a periodic rotating wave emerge from high-dimensional chaos in a ring of coupled chaotic oscillators?
Zhang Y, Hu G, Cerdeira HA., Phys Rev E Stat Nonlin Soft Matter Phys 64(3 pt 2), 2001
PMID: 11580483
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol Rev 80(1), 2000
PMID: 10617766
What does robotics offer animal behaviour?
Webb B., Anim Behav 60(5), 2000
PMID: 11082225
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bässler U, Büschges A., Brain Res Brain Res Rev 27(1), 1998
PMID: 9639677
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Oscillatory network controlling six-legged locomotion. Optimization of model parameters.
Cymbalyuk GS, Borisyuk RM, Müller-Wilm U, Cruse H., Neural Netw 11(7-8), 1998
PMID: 12662761
Biorobotic approaches to the study of motor systems.
Beer RD, Chiel HJ, Quinn RD, Ritzmann RE., Curr Opin Neurobiol 8(6), 1998
PMID: 9914233
A modular artificial neural net for controlling a six-legged walking system.
Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M., Biol Cybern 72(5), 1995
PMID: 7734551
Elimination of potassium channel expression by antisense oligonucleotides in a pituitary cell line.
Chung S, Saal DB, Kaczmarek LK., Proc Natl Acad Sci U S A 92(13), 1995
PMID: 7597060
In-phase and antiphase self-oscillations in a model of two electrically coupled pacemakers.
Cymbalyuk GS, Nikolaev EV, Borisyuk RM., Biol Cybern 71(2), 1994
PMID: 8068776
Coordination of the legs of a slow-walking cat.
Cruse H, Warnecke H., Exp Brain Res 89(1), 1992
PMID: 1601093

42 References

Daten bereitgestellt von Europe PubMed Central.

Graham, Adv. Insect Physiol. 18(), 1985

Cruse, J. Exp. Biol. 92(), 1981

Dean, J. Comp. Physiol. A 155(), 1984

Cruse, J. Exp. Biol. 116(), 1985

Schmitz, 1985

Weiland, J. Exp. Biol. 133(), 1987

Bässler, J. Exp. Biol. 136(), 1988

Cruse, J. Exp. Biol. 116(), 1985

Cruse, 1985

Bässler, Biol. Cybern. 54(), 1986

Cruse, J. Exp. Biol. 121(), 1986

Cruse, J. Exp. Biol. 138(), 1988

Cruse, J. Exp. Biol. 145(), 1989

Warnecke, Verh. Dtsch. Zool. Ges. 81(), 1989

von, Pflügers Arch. Ges. Physiol. 246(), 1943

Cruse, J. Exp. Biol. 101(), 1982

Dean, J. Comp. Physiol. 148(), 1982

Bässler, Zool. Jahrb. Physiol. 91(), 1987

Dean, J. Exp. Biol. 103(), 1983

Cruse, J. Exp. Biol. 114(), 1985

Bässler, 1983

Clarac, Trends Neurosci. 7(), 1984

Clarac, 1985

Bässler, J. Exp. Biol. 105(), 1983

Pearson, J. Exp. Biol. 58(), 1973

Reingold, J. Insect Physiol. 23(), 1977

Bässler, Biol. Cybern. 55(), 1987

Greene, J. Exp. Biol. 78(), 1979


Cruse, Biol. Cybern. 24(), 1976

Cruse, Biol. Cybern. 61(), 1989

Cruse, Biol. Cybern. 36(), 1980

Cruse, 1985

Clarac, 1985

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 1688670
PubMed | Europe PMC

Suchen in

Google Scholar