The human arm as a redundant manipulator: the control of path and joint angles

Cruse H, Brüwer M (1987)
Biological cybernetics 57(1-2): 137-144.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Cruse, HolkUniBi; Brüwer, M.
Abstract / Bemerkung
The movements studied involved moving the tip of a pointer attached to the hand from a given starting point to a given end point in a horizontal plane. Three joints — the shoulder, elbow and wrist —were free to move. Thus the system represented a redundant manipulator. The coordination of the movements of the three joints was recorded and analyzed. The study concerned how the joints are controlled during a movement. The results are used to evaluate several current hypotheses for motor control. Basically, the incremental changes are calculated so as to move the tip of the manipulator along a straight line in the workspace. The values of the individual joints seem to be determined as follows. Starting from the initial values the incremental changes in the three joint angles represent a compromise between two criteria: 1) the amount of the angular change should be about the same in the three joints, and 2) the angular changes should minimize the total cost of the arm position as determined by cost functions defined for each joint as a function of angle. By itself, this mechanism would produce strongly curved trajectories in joint space which could include additional acceleration and deceleration in a joint. These are reduced by the influence of a third criterion which fits with the mass-spring hypothesis. Thus the path is calculated as a compromise between a straight line in workspace and a straight line in joint space. The latter can produce curved paths in the workspace such as were actually found in the experiments. A model calculation shows that these hypotheses can qualitatively describe the experimental findings.
Erscheinungsjahr
1987
Zeitschriftentitel
Biological cybernetics
Band
57
Ausgabe
1-2
Seite(n)
137-144
ISSN
0340-1200
eISSN
1432-0770
Page URI
https://pub.uni-bielefeld.de/record/1781434

Zitieren

Cruse H, Brüwer M. The human arm as a redundant manipulator: the control of path and joint angles. Biological cybernetics. 1987;57(1-2):137-144.
Cruse, H., & Brüwer, M. (1987). The human arm as a redundant manipulator: the control of path and joint angles. Biological cybernetics, 57(1-2), 137-144. https://doi.org/10.1007/BF00318723
Cruse, Holk, and Brüwer, M. 1987. “The human arm as a redundant manipulator: the control of path and joint angles”. Biological cybernetics 57 (1-2): 137-144.
Cruse, H., and Brüwer, M. (1987). The human arm as a redundant manipulator: the control of path and joint angles. Biological cybernetics 57, 137-144.
Cruse, H., & Brüwer, M., 1987. The human arm as a redundant manipulator: the control of path and joint angles. Biological cybernetics, 57(1-2), p 137-144.
H. Cruse and M. Brüwer, “The human arm as a redundant manipulator: the control of path and joint angles”, Biological cybernetics, vol. 57, 1987, pp. 137-144.
Cruse, H., Brüwer, M.: The human arm as a redundant manipulator: the control of path and joint angles. Biological cybernetics. 57, 137-144 (1987).
Cruse, Holk, and Brüwer, M. “The human arm as a redundant manipulator: the control of path and joint angles”. Biological cybernetics 57.1-2 (1987): 137-144.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:38Z
MD5 Prüfsumme
4a0d04c816cd51244243a93e33436bc3


31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Extending Energy Optimization in Goal-Directed Aiming from Movement Kinematics to Joint Angles.
Burkitt JJ, Bongers RM, Elliott D, Hansen S, Lyons JL., J Mot Behav 49(2), 2017
PMID: 28327058
A Donders' Like Law for Arm Movements: The Signal not the Noise.
Ewart S, Hynes SM, Darling WG, Capaday C., Front Hum Neurosci 10(), 2016
PMID: 27065836
Analytical Inverse Optimization in Two-Hand Prehensile Tasks.
Parsa B, Ambike S, Terekhov A, Zatsiorsky VM, Latash ML., J Mot Behav 48(5), 2016
PMID: 27254391
Movement paths in operating hand-held tools: tests of distal-shift hypotheses.
Sülzenbrück S, Heuer H., J Neurophysiol 109(11), 2013
PMID: 23486203
The bliss (not the problem) of motor abundance (not redundancy).
Latash ML., Exp Brain Res 217(1), 2012
PMID: 22246105
Evidence for composite cost functions in arm movement planning: an inverse optimal control approach.
Berret B, Chiovetto E, Nori F, Pozzo T., PLoS Comput Biol 7(10), 2011
PMID: 22022242
Posture of the arm when grasping spheres to place them elsewhere.
Schot WD, Brenner E, Smeets JB., Exp Brain Res 204(2), 2010
PMID: 20567809
The use of a tool requires its incorporation into the movement: evidence from stick-pointing in apraxia.
Jacobs S, Bussel B, Combeaud M, Roby-Brami A., Cortex 45(4), 2009
PMID: 19231475
Nonlinear visuomotor transformations: locus and modularity.
Verwey WB, Heuer H., Q J Exp Psychol (Hove) 60(12), 2007
PMID: 17853221
Amplitude and direction errors in kinesthetic pointing.
Baud-Bovy G, Viviani P., Exp Brain Res 157(2), 2004
PMID: 15045500
Towards understanding the workspace of human limbs.
Abdel-Malek K, Yang J, Brand R, Tanbour E., Ergonomics 47(13), 2004
PMID: 15513715
A modeling study of potential sources of curvature in human reaching movements.
Micci Barreca D, Guenther FH., J Mot Behav 33(4), 2001
PMID: 11734413
Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation.
Adamovich SV, Berkinblit MB, Fookson O, Poizner H., J Neurophysiol 79(6), 1998
PMID: 9636090
The influence of gender on spine, hip, knee, and ankle motions during a reaching task.
Thomas JS, Corcos DM, Hasan Z., J Mot Behav 30(2), 1998
PMID: 20037025
Finding final postures.
Vaughan J, Rosenbaum DA, Harp CJ, Loukopoulos LD, Engelbrecht S., J Mot Behav 30(3), 1998
PMID: 20037084
Geometric features of workspace and joint-space paths of 3D reaching movements.
Klein Breteler MD, Meulenbroek RG, Gielen SC., Acta Psychol (Amst) 100(1-2), 1998
PMID: 9844555
Period duration of physical and imaginary movement sequences affects contralateral amplitude modulation.
Heuer H, Spijkers W, Kleinsorge T, van der Loo H., Q J Exp Psychol A 51(4), 1998
PMID: 9854441
The coordination between trunk and arm motion during pointing movements.
Kaminski TR, Bock C, Gentile AM., Exp Brain Res 106(3), 1995
PMID: 8983989
On the cost functions for the control of the human arm movement.
Cruse H, Wischmeyer E, Brüwer M, Brockfeld P, Dress A., Biol Cybern 62(6), 1990
PMID: 2357475
Kinematic networks. A distributed model for representing and regularizing motor redundancy.
Mussa Ivaldi FA, Morasso P, Zaccaria R., Biol Cybern 60(1), 1988
PMID: 3214648

12 References

Daten bereitgestellt von Europe PubMed Central.

Human arm trajectory formation.
Abend W, Bizzi E, Morasso P., Brain 105(Pt 2), 1982
PMID: 7082993
Kinematic features of unrestrained vertical arm movements.
Atkeson CG, Hollerbach JM., J. Neurosci. 5(9), 1985
PMID: 4031998

H, Biol Cybern 54(), 1986

AG, Biophysics 19(), 1974

JM, 1986
Dynamic interactions between limb segments during planar arm movement.
Hollerbach MJ, Flash T., Biol Cybern 44(1), 1982
PMID: 7093370

JM, 1986

JM, 1985
Spatial control of arm movements.
Morasso P., Exp Brain Res 42(2), 1981
PMID: 7262217
Invariant characteristics of a pointing movement in man.
Soechting JF, Lacquaniti F., J. Neurosci. 1(7), 1981
PMID: 7346580

T, 1984
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 3620542
PubMed | Europe PMC

Suchen in

Google Scholar