Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix

Elsner L (1976)
Linear algebra and its applications 15(3): 235-242.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Noda established the superlinear convergence of an inverse iteration procedure for calculating the spectral radius and the associated positive eigenvector of a non-negative irreducible matrix. Here a new proof is given, based completely on the underlying order structure. The main tool is Hopf's inequality. It is shown that the convergence is quadratic.
Erscheinungsjahr
1976
Zeitschriftentitel
Linear algebra and its applications
Band
15
Ausgabe
3
Seite(n)
235-242
ISSN
0024-3795
Page URI
https://pub.uni-bielefeld.de/record/1780263

Zitieren

Elsner L. Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications. 1976;15(3):235-242.
Elsner, L. (1976). Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications, 15(3), 235-242. https://doi.org/10.1016/0024-3795(76)90029-X
Elsner, Ludwig. 1976. “Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix”. Linear algebra and its applications 15 (3): 235-242.
Elsner, L. (1976). Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications 15, 235-242.
Elsner, L., 1976. Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications, 15(3), p 235-242.
L. Elsner, “Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix”, Linear algebra and its applications, vol. 15, 1976, pp. 235-242.
Elsner, L.: Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix. Linear algebra and its applications. 15, 235-242 (1976).
Elsner, Ludwig. “Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix”. Linear algebra and its applications 15.3 (1976): 235-242.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:31Z
MD5 Prüfsumme
a99ab955a915ccb1c17a2f5e2a82dab6


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar