Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model

Levy J, Cruse H (2008)
Journal of Comparative Physiology A 194(8): 735-750.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
What strategies may insects use when controlling redundant degrees of freedom? We investigate this question in standing stick insects. Specifically, the question is addressed how the changes of the torques are coordinated that are produced by the 18 leg joints in a still standing animal. Using a generalization of the principal component analysis, three coordination rules have been identified. These rules are sufficient to describe more than half of the variation observed in the data. To move from a descriptive approach to hypotheses on how the neuronal system may be structured, two simulation approaches are proposed. In both cases, torques are decreased by randomly selected values. In the first simulation, the coordination rules derived from the principal components are used to produce changes in torques. In the second simulation, the individual joint torques are modified using a simple local approach. In both approaches, the resulting torques are readjusted by Integral controllers applied in each joint. The results show that the torque distribution problem can be solved by a local approach without requiring a body model.
Erscheinungsjahr
Zeitschriftentitel
Journal of Comparative Physiology A
Band
194
Ausgabe
8
Seite(n)
735-750
ISSN
PUB-ID

Zitieren

Levy J, Cruse H. Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. Journal of Comparative Physiology A. 2008;194(8):735-750.
Levy, J., & Cruse, H. (2008). Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. Journal of Comparative Physiology A, 194(8), 735-750. doi:10.1007/s00359-008-0348-
Levy, J., and Cruse, H. (2008). Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. Journal of Comparative Physiology A 194, 735-750.
Levy, J., & Cruse, H., 2008. Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. Journal of Comparative Physiology A, 194(8), p 735-750.
J. Levy and H. Cruse, “Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model”, Journal of Comparative Physiology A, vol. 194, 2008, pp. 735-750.
Levy, J., Cruse, H.: Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. Journal of Comparative Physiology A. 194, 735-750 (2008).
Levy, Jeremy, and Cruse, Holk. “Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model”. Journal of Comparative Physiology A 194.8 (2008): 735-750.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
Szczecinski NS, Quinn RD., Biol Cybern 112(1-2), 2018
PMID: 28782078
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506

34 References

Daten bereitgestellt von Europe PubMed Central.

Axial synergies during human upper trunk bending.
Alexandrov A, Frolov A, Massion J., Exp Brain Res 118(2), 1998
PMID: 9547090

N, 1967

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

R, J Chemometr 17(5), 2003

J, Psychometrika 35(3), 1970

H, J Insect Physiol 41(9), 1995

H, J Exp Biol 92(1), 1981

H, J Exp Biol 102(1), 1983
Adaptive control for insect leg position: controller properties depend on substrate compliance.
Cruse H, Kuhn S, Park S, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(12), 2004
PMID: 15378330
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089040

A, Biophysics 11(), 1966

A, Biophysics 11(), 1966
Coordinating movement at two joints: a principle of linear covariance.
Gottlieb GL, Song Q, Hong DA, Almeida GL, Corcos D., J. Neurophysiol. 75(4), 1996
PMID: 8727412

R, UCLA Work Pap Phon 16(), 1970

P, Psychometrika 45(1), 1980

F, Acta Psychol 54(1–3), 1983

AUTHOR UNKNOWN, 0

R, Comput Statist Data Anal 2529–2535(10), 2005

AUTHOR UNKNOWN, 0

B, 2004
Three dimensional arm trajectories.
Morasso P., Biol Cybern 48(3), 1983
PMID: 6639982

D, Psychol Sci 2(2), 1991

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The effect of movement direction on joint torque covariation.
Shemmell J, Hasan Z, Gottlieb GL, Corcos DM., Exp Brain Res 176(1), 2006
PMID: 16850324
Optimal feedback control as a theory of motor coordination.
Todorov E, Jordan MI., Nat. Neurosci. 5(11), 2002
PMID: 12404008

AUTHOR UNKNOWN, 0
Some mathematical notes on three-mode factor analysis.
Tucker LR., Psychometrika 31(3), 1966
PMID: 5221127
Cooperative selection of movements: the optimal selection model.
Vaughan J, Rosenbaum DA, Diedrich FJ, Moore CM., Psychol Res 58(4), 1996
PMID: 8643808
Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses.
Wang Y, Asaka T, Zatsiorsky VM, Latash ML., Exp Brain Res 174(4), 2006
PMID: 16710681

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18642004
PubMed | Europe PMC

Suchen in

Google Scholar