Graded limb targeting in an insect is caused by the shift of a single movement pattern
Dürr V, Matheson T (2003)
Journal of Neurophysiology 90(3): 1754-1765.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dürr, VolkerUniBi ;
Matheson, T.
Einrichtung
Abstract / Bemerkung
Grooming responses are movements of a multi-jointed limb that are targeted toward a stimulus site on the body. To be successful, they require a continuous transformation of stimulus location into a corresponding motor pattern or selection and blending of a subset of cardinal motor patterns. Tactile stimulation of one forewing of a locust elicits characteristic grooming movements of the ipsilateral hind leg. An initial targeted trajectory that moves the tarsus toward the site of stimulation is followed by a cyclic trajectory in the region of the stimulus. We have analyzed both components of this behavior to quantify the relative effects of somatotopic stimulus position and leg start posture on three parameters: initial movement direction, accuracy, and grooming distribution. Accuracy and grooming distribution were significantly affected by the stimulus location but were not influenced by the initial leg posture. Both cues systematically shifted the initial movement direction from the onset of the response. The subsequent cyclic component of grooming movements forms a behavioral continuum with no clustering in joint angle space. We therefore conclude that forewing grooming in locusts is generated by a single movement pattern that is continuously shifted by a sensory cue signaling position on the forewing surface. Both vertebrates and invertebrates can switch between distinct movement forms to groom different parts of their bodies. Our data provide the first evidence that invertebrates, like vertebrates, also have graded control of limb targeting within the somatosensory receptive field of a single form of motor response.
Stichworte
Cues;
distribution;
Vertebrates;
RESPONSES;
MOVEMENTS;
POSITION;
COMPONENTS;
PATTERNS;
stimulation;
stimulus;
MOTOR;
ACCURACY;
insect;
control;
direction;
Grooming;
limb;
COMPONENT;
JOINT;
Invertebrate;
sensory;
tactile;
tarsus;
Locust;
Vertebrate;
transformation;
tactile stimulation;
Targeting;
Motor pattern;
Receptive field;
NO;
Posture;
movement;
leg;
hind leg;
response;
Schistocerca;
body;
behavior
Erscheinungsjahr
2003
Zeitschriftentitel
Journal of Neurophysiology
Band
90
Ausgabe
3
Seite(n)
1754-1765
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1681354
Zitieren
Dürr V, Matheson T. Graded limb targeting in an insect is caused by the shift of a single movement pattern. Journal of Neurophysiology. 2003;90(3):1754-1765.
Dürr, V., & Matheson, T. (2003). Graded limb targeting in an insect is caused by the shift of a single movement pattern. Journal of Neurophysiology, 90(3), 1754-1765. https://doi.org/10.1152/jn.00416.2003
Dürr, Volker, and Matheson, T. 2003. “Graded limb targeting in an insect is caused by the shift of a single movement pattern”. Journal of Neurophysiology 90 (3): 1754-1765.
Dürr, V., and Matheson, T. (2003). Graded limb targeting in an insect is caused by the shift of a single movement pattern. Journal of Neurophysiology 90, 1754-1765.
Dürr, V., & Matheson, T., 2003. Graded limb targeting in an insect is caused by the shift of a single movement pattern. Journal of Neurophysiology, 90(3), p 1754-1765.
V. Dürr and T. Matheson, “Graded limb targeting in an insect is caused by the shift of a single movement pattern”, Journal of Neurophysiology, vol. 90, 2003, pp. 1754-1765.
Dürr, V., Matheson, T.: Graded limb targeting in an insect is caused by the shift of a single movement pattern. Journal of Neurophysiology. 90, 1754-1765 (2003).
Dürr, Volker, and Matheson, T. “Graded limb targeting in an insect is caused by the shift of a single movement pattern”. Journal of Neurophysiology 90.3 (2003): 1754-1765.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
19 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Transfer of Spatial Contact Information Among Limbs and the Notion of Peripersonal Space in Insects.
Dürr V, Schilling M., Front Comput Neurosci 12(), 2018
PMID: 30618693
Dürr V, Schilling M., Front Comput Neurosci 12(), 2018
PMID: 30618693
Motor control of Drosophila feeding behavior.
Schwarz O, Bohra AA, Liu X, Reichert H, VijayRaghavan K, Pielage J., Elife 6(), 2017
PMID: 28211791
Schwarz O, Bohra AA, Liu X, Reichert H, VijayRaghavan K, Pielage J., Elife 6(), 2017
PMID: 28211791
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
A neural command circuit for grooming movement control.
Hampel S, Franconville R, Simpson JH, Seeds AM., Elife 4(), 2015
PMID: 26344548
Hampel S, Franconville R, Simpson JH, Seeds AM., Elife 4(), 2015
PMID: 26344548
Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
Passive joint forces are tuned to limb use in insects and drive movements without motor activity.
Ache JM, Matheson T., Curr Biol 23(15), 2013
PMID: 23871240
Ache JM, Matheson T., Curr Biol 23(15), 2013
PMID: 23871240
Grooming Behavior as a Mechanism of Insect Disease Defense.
Zhukovskaya M, Yanagawa A, Forschler BT., Insects 4(4), 2013
PMID: 26462526
Zhukovskaya M, Yanagawa A, Forschler BT., Insects 4(4), 2013
PMID: 26462526
Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.
Ache JM, Matheson T., J Neurophysiol 107(10), 2012
PMID: 22357791
Ache JM, Matheson T., J Neurophysiol 107(10), 2012
PMID: 22357791
Studying sensorimotor integration in insects.
Huston SJ, Jayaraman V., Curr Opin Neurobiol 21(4), 2011
PMID: 21705212
Huston SJ, Jayaraman V., Curr Opin Neurobiol 21(4), 2011
PMID: 21705212
Functional recovery of aimed scratching movements after a graded proprioceptive manipulation.
Page KL, Matheson T., J Neurosci 29(12), 2009
PMID: 19321786
Page KL, Matheson T., J Neurosci 29(12), 2009
PMID: 19321786
Motor control of aimed limb movements in an insect.
Page KL, Zakotnik J, Dürr V, Matheson T., J Neurophysiol 99(2), 2008
PMID: 18032564
Page KL, Zakotnik J, Dürr V, Matheson T., J Neurophysiol 99(2), 2008
PMID: 18032564
Insect walking is based on a decentralized architecture revealing a simple and robust controller.
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
A dynamic model of thoracic differentiation for the control of turning in the stick insect.
Rosano H, Webb B., Biol Cybern 97(3), 2007
PMID: 17647010
Rosano H, Webb B., Biol Cybern 97(3), 2007
PMID: 17647010
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(10), 2006
PMID: 16830135
Schumm M, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(10), 2006
PMID: 16830135
Leg coordination during turning on an extremely narrow substrate in a bug, Mesocerus marginatus (Heteroptera, Coreidae).
Frantsevich LI, Cruse H., J Insect Physiol 51(10), 2005
PMID: 16162355
Frantsevich LI, Cruse H., J Insect Physiol 51(10), 2005
PMID: 16162355
Motor primitives in vertebrates and invertebrates.
Flash T, Hochner B., Curr Opin Neurobiol 15(6), 2005
PMID: 16275056
Flash T, Hochner B., Curr Opin Neurobiol 15(6), 2005
PMID: 16275056
A posture optimization algorithm for model-based motion capture of movement sequences.
Zakotnik J, Matheson T, Dürr V., J Neurosci Methods 135(1-2), 2004
PMID: 15020088
Zakotnik J, Matheson T, Dürr V., J Neurosci Methods 135(1-2), 2004
PMID: 15020088
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
36 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Progressive degradation of serial grooming chains by descending decerebration.
Berridge KC., Behav. Brain Res. 33(3), 1989
PMID: 2757783
Berridge KC., Behav. Brain Res. 33(3), 1989
PMID: 2757783
Natural syntax rules control action sequence of rats.
Berridge KC, Fentress JC, Parr H., Behav. Brain Res. 23(1), 1987
PMID: 3828046
Berridge KC, Fentress JC, Parr H., Behav. Brain Res. 23(1), 1987
PMID: 3828046
AUTHOR UNKNOWN, 0
Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
Burrows M, Newland PL., J. Comp. Neurol. 329(3), 1993
PMID: 8459052
Burrows M, Newland PL., J. Comp. Neurol. 329(3), 1993
PMID: 8459052
AUTHOR UNKNOWN, 0
The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus.
Cruse H., Physiol. Entomol. 4(2), 1979
PMID: IND79073327
Cruse H., Physiol. Entomol. 4(2), 1979
PMID: IND79073327
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
The neural control of cercal grooming behavior in the cockroach, Periplanta americana.
Eaton RC, Farley RD., J. Insect Physiol. 15(6), 1969
PMID: 5768887
Eaton RC, Farley RD., J. Insect Physiol. 15(6), 1969
PMID: 5768887
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Metathoracic neurons integrating intersegmental sensory information in the locust.
Matheson T., J. Comp. Neurol. 444(2), 2002
PMID: 11835184
Matheson T., J. Comp. Neurol. 444(2), 2002
PMID: 11835184
Load compensation in targeted limb movements of an insect.
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699
AUTHOR UNKNOWN, 0
A topographic map of sensory cell terminal arborizations in the cricket CNS; correlation with birthday and position in a sensory array.
Murphey RK, Jacklet A, Schuster L., J. Comp. Neurol. 191(1), 1980
PMID: 7400391
Murphey RK, Jacklet A, Schuster L., J. Comp. Neurol. 191(1), 1980
PMID: 7400391
Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust.
Newland PL., J. Comp. Neurol. 312(4), 1991
PMID: 1761738
Newland PL., J. Comp. Neurol. 312(4), 1991
PMID: 1761738
Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect.
Newland PL, Rogers SM, Gaaboub I, Matheson T., J. Comp. Neurol. 425(1), 2000
PMID: 10940944
Newland PL, Rogers SM, Gaaboub I, Matheson T., J. Comp. Neurol. 425(1), 2000
PMID: 10940944
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Observations on the scratch-reflex in the spinal dog.
Sherrington CS., J. Physiol. (Lond.) 34(1-2), 1906
PMID: 16992835
Sherrington CS., J. Physiol. (Lond.) 34(1-2), 1906
PMID: 16992835
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 12773499
PubMed | Europe PMC
Suchen in