Context-dependent changes in strength and efficacy of leg coordination mechanisms
Dürr V (2005)
Journal of Experimental Biology 208(12): 2253-2267.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Appropriate coordination of stepping in adjacent legs is crucial for stable walking. Several leg coordination rules have been derived from behavioural experiments on walking insects, some of which also apply to arthropods with more than six legs and to four-legged walking vertebrates. Three of these rules affect the timing of stance-swing transition [rules 1 to 3 (sensu Cruse)]. They can give rise to normal leg coordination and adaptive responses to disturbances, as shown by kinematic simulations and dynamic hardware tests. In spite of their importance to the study of animal walking, the coupling strength associated with these rules has never been measured experimentally. Generally coupling strength of the underlying mechanisms has been considered constant rather than context-dependent. The present study analyses stepping patterns of the stick insect Carausius morosus during straight and curve walking sequences. To infer strength and efficacy of coupling between pairs of sender and receiver legs, the likelihood of the receiver leg being in swing is determined, given a certain delay relative to the time of a swing-stance (or stance-swing) transition in the sender leg. This is compared to a corresponding measure for independent, hence uncoupled, step sequences. The difference is defined as coupling strength. The ratio of coupling strength and its theoretical maximum is defined as efficacy. Irrespective of the coordination rule, coupling strength between ipsilateral leg pairs is at least twice that of contralateral leg pairs, being strongest between ipsilateral hind and middle legs and weakest between contralateral middle legs. Efficacy is highest for inhibitory rule 1, reaching 84-95% for ipsilateral and 29-65% for contralateral leg pairs. Efficacy of excitatory rules 2 and 3 ranges between 35-56% for ipsilateral and 8-21% for contralateral leg pairs. The behavioural transition from straight to curve walking is associated with context-dependent changes in coupling strength, increasing in both outer leg pairs and decreasing between inner hind and middle leg. Thus, the coordination rules that are thought to underlie many adaptive properties of the walking system, themselves adapt in a context-dependent manner.
Stichworte
Middle Leg;
contralateral;
Reaching;
Simulation;
walking system;
system;
MECHANISMS;
WALKING INSECT;
MECHANISM;
Vertebrates;
context-dependent;
inhibitory;
Hardware;
coordination;
Curve walking;
TIME;
SEQUENCES;
Carausius;
Animal;
PATTERNS;
response;
Leg coordination;
Stick Insect;
Walking;
legs;
leg;
insect;
Arthropod;
RESPONSES;
Vertebrate;
Stepping;
coordination mechanism
Erscheinungsjahr
2005
Zeitschriftentitel
Journal of Experimental Biology
Band
208
Ausgabe
12
Seite(n)
2253-2267
ISSN
0022-0949
eISSN
1477-9145
Page URI
https://pub.uni-bielefeld.de/record/1681329
Zitieren
Dürr V. Context-dependent changes in strength and efficacy of leg coordination mechanisms. Journal of Experimental Biology. 2005;208(12):2253-2267.
Dürr, V. (2005). Context-dependent changes in strength and efficacy of leg coordination mechanisms. Journal of Experimental Biology, 208(12), 2253-2267. https://doi.org/10.1242/jeb.01638
Dürr, Volker. 2005. “Context-dependent changes in strength and efficacy of leg coordination mechanisms”. Journal of Experimental Biology 208 (12): 2253-2267.
Dürr, V. (2005). Context-dependent changes in strength and efficacy of leg coordination mechanisms. Journal of Experimental Biology 208, 2253-2267.
Dürr, V., 2005. Context-dependent changes in strength and efficacy of leg coordination mechanisms. Journal of Experimental Biology, 208(12), p 2253-2267.
V. Dürr, “Context-dependent changes in strength and efficacy of leg coordination mechanisms”, Journal of Experimental Biology, vol. 208, 2005, pp. 2253-2267.
Dürr, V.: Context-dependent changes in strength and efficacy of leg coordination mechanisms. Journal of Experimental Biology. 208, 2253-2267 (2005).
Dürr, Volker. “Context-dependent changes in strength and efficacy of leg coordination mechanisms”. Journal of Experimental Biology 208.12 (2005): 2253-2267.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
19 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
A semi-automatic and quantitative method to evaluate behavioral photosensitivity in animals based on the optomotor response (OMR).
Matsuo M, Ando Y, Kamei Y, Fukamachi S., Biol Open 7(6), 2018
PMID: 29921705
Matsuo M, Ando Y, Kamei Y, Fukamachi S., Biol Open 7(6), 2018
PMID: 29921705
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
Dallmann CJ, Dürr V, Schmitz J., Proc Biol Sci 283(1823), 2016
PMID: 26791608
Dallmann CJ, Dürr V, Schmitz J., Proc Biol Sci 283(1823), 2016
PMID: 26791608
How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants.
Pfeffer SE, Wahl VL, Wittlinger M., J Exp Biol 219(pt 14), 2016
PMID: 27445398
Pfeffer SE, Wahl VL, Wittlinger M., J Exp Biol 219(pt 14), 2016
PMID: 27445398
Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres.
David I, Holmes P, Ayali A., Biol Open 5(9), 2016
PMID: 27422902
David I, Holmes P, Ayali A., Biol Open 5(9), 2016
PMID: 27422902
Intersegmental coupling and recovery from perturbations in freely running cockroaches.
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P., J Exp Biol 218(pt 2), 2015
PMID: 25609786
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P., J Exp Biol 218(pt 2), 2015
PMID: 25609786
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits.
Fuchs E, Holmes P, Kiemel T, Ayali A., Front Neural Circuits 4(), 2011
PMID: 21369365
Fuchs E, Holmes P, Kiemel T, Ayali A., Front Neural Circuits 4(), 2011
PMID: 21369365
Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
von Twickel A, Büschges A, Pasemann F., Biol Cybern 104(1-2), 2011
PMID: 21327828
von Twickel A, Büschges A, Pasemann F., Biol Cybern 104(1-2), 2011
PMID: 21327828
Active tactile exploration for adaptive locomotion in the stick insect.
Schütz C, Dürr V., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969681
Schütz C, Dürr V., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969681
Insect walking is based on a decentralized architecture revealing a simple and robust controller.
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
A dynamic model of thoracic differentiation for the control of turning in the stick insect.
Rosano H, Webb B., Biol Cybern 97(3), 2007
PMID: 17647010
Rosano H, Webb B., Biol Cybern 97(3), 2007
PMID: 17647010
Adaptive motor behavior in insects.
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(10), 2006
PMID: 16830135
Schumm M, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(10), 2006
PMID: 16830135
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 15939768
PubMed | Europe PMC
Suchen in