The functional sense of central oscillations in walking

Cruse H (2002)
Biological Cybernetics 86(4): 271-280.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Rhythmic motor output is generally assumed to be produced by central pattern generators or, more specific, central oscillators, the rhythmic output of which can be entrained and modulated by sensory input and descending control. In the case of locomotor systems, the output of the central system, i.e., the output obtained after deafferentation of sensory feedback, shows many of the temporal characteristics of real movements. Therefore the term fictive locomotion has been coined. This article concentrates on a specific locomotor behavior, namely walking; in particular walking in invertebrates. In contrast to the traditional view, an alternative hypothesis is formulated to interpret the functional sense of these central oscillations which have been found in many cases. It is argued that the basic function of the underlying circuit is to avoid cocontraction of antagonistic muscles. Such a system operates best with an inherent period just above the maximum period observed in real walking. The circuit discussed in this article (Fig. 2) shows several properties in common with results described as "fictive walking". It furthermore could explain a number of properties observed in animals walking in different situations. According to this hypothesis, the oscillations found after deafferentation are side effects occurring in specific artificial situations. If, however, a parameter called central excitation is large enough, the system can act as a central oscillator that overrides the sensory input completely.
Stichworte
rhythmic; FICTIVE LOCOMOTION; muscles; Animals; ACT; excitation; Animal; Muscle; Invertebrate; locomotor; SYSTEMS; system; Deafferentation; temporal; MOVEMENTS; movement; Locomotion; behavior; input; control; Oscillator; OSCILLATORS; cocontraction; Central pattern generator; oscillations; Walking; Cybernetics; oscillation; MOTOR; sensory; motor output
Erscheinungsjahr
2002
Zeitschriftentitel
Biological Cybernetics
Band
86
Ausgabe
4
Seite(n)
271-280
ISSN
0340-1200
Page URI
https://pub.uni-bielefeld.de/record/1681273

Zitieren

Cruse H. The functional sense of central oscillations in walking. Biological Cybernetics. 2002;86(4):271-280.
Cruse, H. (2002). The functional sense of central oscillations in walking. Biological Cybernetics, 86(4), 271-280. https://doi.org/10.1007/s00422-001-0301-2
Cruse, Holk. 2002. “The functional sense of central oscillations in walking”. Biological Cybernetics 86 (4): 271-280.
Cruse, H. (2002). The functional sense of central oscillations in walking. Biological Cybernetics 86, 271-280.
Cruse, H., 2002. The functional sense of central oscillations in walking. Biological Cybernetics, 86(4), p 271-280.
H. Cruse, “The functional sense of central oscillations in walking”, Biological Cybernetics, vol. 86, 2002, pp. 271-280.
Cruse, H.: The functional sense of central oscillations in walking. Biological Cybernetics. 86, 271-280 (2002).
Cruse, Holk. “The functional sense of central oscillations in walking”. Biological Cybernetics 86.4 (2002): 271-280.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Metastability of the Double-Tripod Gait in Locust Locomotion.
Reches E, Knebel D, Rillich J, Ayali A, Barzel B., iScience 12(), 2019
PMID: 30677739
The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
Yeldesbay A, Tóth T, Daun S., J Comput Neurosci 44(3), 2018
PMID: 29589252
Rigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust.
Knebel D, Ayali A, Pflüger HJ, Rillich J., Front Neural Circuits 10(), 2016
PMID: 28123358
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
No need for a cognitive map: decentralized memory for insect navigation.
Cruse H, Wehner R., PLoS Comput Biol 7(3), 2011
PMID: 21445233
Control of stepping velocity in the stick insect Carausius morosus.
Gruhn M, von Uckermann G, Westmark S, Wosnitza A, Büschges A, Borgmann A., J Neurophysiol 102(2), 2009
PMID: 19535483
Biological inspiration used for robots motion synthesis.
Zielińska T., J Physiol Paris 103(3-5), 2009
PMID: 19665556
Towards a general neural controller for quadrupedal locomotion.
Maufroy C, Kimura H, Takase K., Neural Netw 21(4), 2008
PMID: 18490136
Descending control of turning behavior in the cockroach, Blaberus discoidalis.
Ridgel AL, Alexander BE, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(4), 2007
PMID: 17123086
Insect walking is based on a decentralized architecture revealing a simple and robust controller.
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Control of stepping velocity in a single insect leg during walking.
Gabriel JP, Büschges A., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148059
Walking in Aretaon asperrimus.
Jeck T, Cruse H., J Insect Physiol 53(7), 2007
PMID: 17482205
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(10), 2006
PMID: 16830135
Assessing sensory function in locomotor systems using neuro-mechanical simulations.
Pearson K, Ekeberg O, Büschges A., Trends Neurosci 29(11), 2006
PMID: 16956675
Insect walking and robotics.
Delcomyn F., Annu Rev Entomol 49(), 2004
PMID: 14651456
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Büschges A., J Neurophysiol 92(1), 2004
PMID: 14999042
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11956808
PubMed | Europe PMC

Suchen in

Google Scholar