Stick insect locomotion in a complex environment: climbing over large gaps

Bläsing B, Cruse H (2004)
The Journal of Experimental Biology 207(8): 1273-1286.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
In a complex environment, animals are challenged by various types of obstacles. This requires the controller of their walking system to be highly flexible. In this study, stick insects were presented with large gaps to cross in order to observe how locomotion can be adapted to challenging environmental situations. Different approaches were used to investigate the sequence of gap-crossing behaviour. A detailed video analysis revealed that gap-crossing behaviour resembles modified walking behaviour with additional step types. The walking sequence is interrupted by an interval of exploration, in which the insect probes the gap space with its antennae and front legs. When reaching the gap, loss of contact of an antenna with the ground does not elicit any observable reactions. In contrast, an initial front leg step into the gap that often follows antennal 'non-contact' evokes slowing down of stance velocity. An ablation experiment showed that the far edge of the gap is detected by tactile antennal stimulation rather than by vision. Initial contact of an antenna or front leg with the far edge of the gap represents a 'point of no return', after which gap crossing is always successfully completed. Finally, flow chart diagrams of the gap-crossing sequence were constructed based on an ethogram of single elements of behaviour. Comparing flow charts for two gap sizes revealed differences in the frequency and succession of these elements, especially during the first part of the sequence
Erscheinungsjahr
Zeitschriftentitel
The Journal of Experimental Biology
Band
207
Ausgabe
8
Seite(n)
1273-1286
ISSN
PUB-ID

Zitieren

Bläsing B, Cruse H. Stick insect locomotion in a complex environment: climbing over large gaps. The Journal of Experimental Biology. 2004;207(8):1273-1286.
Bläsing, B., & Cruse, H. (2004). Stick insect locomotion in a complex environment: climbing over large gaps. The Journal of Experimental Biology, 207(8), 1273-1286. doi:10.1242/jeb.00SSS
Bläsing, B., and Cruse, H. (2004). Stick insect locomotion in a complex environment: climbing over large gaps. The Journal of Experimental Biology 207, 1273-1286.
Bläsing, B., & Cruse, H., 2004. Stick insect locomotion in a complex environment: climbing over large gaps. The Journal of Experimental Biology, 207(8), p 1273-1286.
B. Bläsing and H. Cruse, “Stick insect locomotion in a complex environment: climbing over large gaps”, The Journal of Experimental Biology, vol. 207, 2004, pp. 1273-1286.
Bläsing, B., Cruse, H.: Stick insect locomotion in a complex environment: climbing over large gaps. The Journal of Experimental Biology. 207, 1273-1286 (2004).
Bläsing, Bettina, and Cruse, Holk. “Stick insect locomotion in a complex environment: climbing over large gaps”. The Journal of Experimental Biology 207.8 (2004): 1273-1286.

36 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An Ultralightweight and Living Legged Robot.
Vo Doan TT, Tan MYW, Bui XH, Sato H., Soft Robot 5(1), 2018
PMID: 29412086
Dynamic traversal of large gaps by insects and legged robots reveals a template.
Gart SW, Yan C, Othayoth R, Ren Z, Li C., Bioinspir Biomim 13(2), 2018
PMID: 29394160
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Neural control and precision of flight muscle activation in Drosophila.
Lehmann FO, Bartussek J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(1), 2017
PMID: 27942807
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
Aoi S, Manoonpong P, Ambe Y, Matsuno F, Wörgötter F., Front Neurorobot 11(), 2017
PMID: 28878645
Modeling search movements of an insect's front leg.
Tóth TI, Berg E, Daun S., Physiol Rep 5(22), 2017
PMID: 29146863
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
Li C, Pullin AO, Haldane DW, Lam HK, Fearing RS, Full RJ., Bioinspir Biomim 10(4), 2015
PMID: 26098002
Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
Dasgupta S, Goldschmidt D, Wörgötter F, Manoonpong P., Front Neurorobot 9(), 2015
PMID: 26441629
Scanning behavior in the medicinal leech Hirudo verbana.
Harley CM, Wagenaar DA., PLoS One 9(1), 2014
PMID: 24465907
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Dürr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
Visually targeted reaching in horse-head grasshoppers.
Niven JE, Ott SR, Rogers SM., Proc Biol Sci 279(1743), 2012
PMID: 22764161
Deciding which way to go: how do insects alter movements to negotiate barriers?
Ritzmann RE, Harley CM, Daltorio KA, Tietz BR, Pollack AJ, Bender JA, Guo P, Horomanski AL, Kathman ND, Nieuwoudt C, Brown AE, Quinn RD., Front Neurosci 6(), 2012
PMID: 22783160
Active tactile exploration for adaptive locomotion in the stick insect.
Schütz C, Dürr V., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969681
Visual targeting of forelimbs in ladder-walking locusts.
Niven JE, Buckingham CJ, Lumley S, Cuttle MF, Laughlin SB., Curr Biol 20(1), 2010
PMID: 20036539
Visuomotor control: not so simple insect locomotion.
Ritzmann RE., Curr Biol 20(1), 2010
PMID: 20152137
Visuomotor control: Drosophila bridges the gap.
Niven JE., Curr Biol 20(7), 2010
PMID: 20392418
Caterpillar crawling over irregular terrain: anticipation and local sensing.
van Griethuijsen LI, Trimmer BA., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(6), 2010
PMID: 20414659
Neural activity in the central complex of the insect brain is linked to locomotor changes.
Bender JA, Pollack AJ, Ritzmann RE., Curr Biol 20(10), 2010
PMID: 20451382
Tight turns in stick insects.
Cruse H, Ehmanns I, Stübner S, Schmitz J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(3), 2009
PMID: 19137316
Antennal motor activity induced by pilocarpine in the American cockroach.
Okada J, Morimoto Y, Toh Y., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(4), 2009
PMID: 19184040
Descending control of turning behavior in the cockroach, Blaberus discoidalis.
Ridgel AL, Alexander BE, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(4), 2007
PMID: 17123086
Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ., Bioinspir Biomim 2(1), 2007
PMID: 17671322
Walking in Aretaon asperrimus.
Jeck T, Cruse H., J Insect Physiol 53(7), 2007
PMID: 17482205
Adaptive motor behavior in insects.
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking.
Quimby LA, Amer AS, Zill SN., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(3), 2006
PMID: 16362305
Goal-driven behavioral adaptations in gap-climbing Drosophila.
Pick S, Strauss R., Curr Biol 15(16), 2005
PMID: 16111941

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15010478
PubMed | Europe PMC

Suchen in

Google Scholar