Mechanisms of stick insect locomotion in a gap crossing paradigm
Bläsing B, Cruse H (2004)
Journal of Comparative Physiology A 190(3): 173-183.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Locomotion of stick insects climbing over gaps of more than twice their step length has proved to be a useful paradigm to investigate how locomotor behaviour is adapted to external conditions. In this study, swing amplitudes and extreme positions of single steps from gap-crossing sequences have been analysed and compared to corresponding parameters of undisturbed walking. We show that adaptations of the basic mechanisms concern movements of single legs as well as the coordination between the legs. Slowing down of stance velocity, searching movements of legs in protraction and the generation of short steps are crucial prerequisites in the gap-crossing task. The rules of leg coordination described for stick insect walking seem to be modified, and load on the supporting legs is assumed to have a major effect on coordination especially in slow walking. Stepping into the gap with a front leg and antennal contact with the far edge of the gap provide information, as both events influence the following leg movements, whereas antennal "non-contact" seems not to contain information. Integration of these results into the model of the walking controller can improve our understanding of insect locomotion in highly irregular environments.
Stichworte
Environment;
Information;
insect;
insect locomotion;
Leg coordination;
Leg movement;
legs;
load;
Locomotion;
movement;
Searching movements;
Stick Insect;
system;
ENVIRONMENTS;
MECHANISMS;
leg;
MECHANISM;
velocity;
Front Leg;
Walking;
Adaptation;
Behaviour;
climbing;
Controller;
coordination;
walking system;
locomotor;
POSITION;
SEQUENCES;
MOVEMENTS;
TASK;
model;
Stepping
Erscheinungsjahr
2004
Zeitschriftentitel
Journal of Comparative Physiology A
Band
190
Ausgabe
3
Seite(n)
173-183
ISSN
0340-7594
eISSN
1432-1351
Page URI
https://pub.uni-bielefeld.de/record/1681250
Zitieren
Bläsing B, Cruse H. Mechanisms of stick insect locomotion in a gap crossing paradigm. Journal of Comparative Physiology A. 2004;190(3):173-183.
Bläsing, B., & Cruse, H. (2004). Mechanisms of stick insect locomotion in a gap crossing paradigm. Journal of Comparative Physiology A, 190(3), 173-183. https://doi.org/10.1007/s00359-003-0482-3
Bläsing, Bettina, and Cruse, Holk. 2004. “Mechanisms of stick insect locomotion in a gap crossing paradigm”. Journal of Comparative Physiology A 190 (3): 173-183.
Bläsing, B., and Cruse, H. (2004). Mechanisms of stick insect locomotion in a gap crossing paradigm. Journal of Comparative Physiology A 190, 173-183.
Bläsing, B., & Cruse, H., 2004. Mechanisms of stick insect locomotion in a gap crossing paradigm. Journal of Comparative Physiology A, 190(3), p 173-183.
B. Bläsing and H. Cruse, “Mechanisms of stick insect locomotion in a gap crossing paradigm”, Journal of Comparative Physiology A, vol. 190, 2004, pp. 173-183.
Bläsing, B., Cruse, H.: Mechanisms of stick insect locomotion in a gap crossing paradigm. Journal of Comparative Physiology A. 190, 173-183 (2004).
Bläsing, Bettina, and Cruse, Holk. “Mechanisms of stick insect locomotion in a gap crossing paradigm”. Journal of Comparative Physiology A 190.3 (2004): 173-183.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
20 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
Szczecinski NS, Quinn RD., Biol Cybern 112(1-2), 2018
PMID: 28782078
Szczecinski NS, Quinn RD., Biol Cybern 112(1-2), 2018
PMID: 28782078
Transfer of Spatial Contact Information Among Limbs and the Notion of Peripersonal Space in Insects.
Dürr V, Schilling M., Front Comput Neurosci 12(), 2018
PMID: 30618693
Dürr V, Schilling M., Front Comput Neurosci 12(), 2018
PMID: 30618693
Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control.
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE., Front Behav Neurosci 11(), 2017
PMID: 28174527
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE., Front Behav Neurosci 11(), 2017
PMID: 28174527
Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
Arena E, Arena P, Strauss R, Patané L., Front Neurorobot 11(), 2017
PMID: 28337138
Arena E, Arena P, Strauss R, Patané L., Front Neurorobot 11(), 2017
PMID: 28337138
Interactions among Drosophila larvae before and during collision.
Otto N, Risse B, Berh D, Bittern J, Jiang X, Klämbt C., Sci Rep 6(), 2016
PMID: 27511760
Otto N, Risse B, Berh D, Bittern J, Jiang X, Klämbt C., Sci Rep 6(), 2016
PMID: 27511760
Insect motor control: methodological advances, descending control and inter-leg coordination on the move.
Borgmann A, Büschges A., Curr Opin Neurobiol 33(), 2015
PMID: 25579064
Borgmann A, Büschges A., Curr Opin Neurobiol 33(), 2015
PMID: 25579064
A direct descending pathway informing locomotor networks about tactile sensor movement.
Ache JM, Haupt SS, Dürr V., J Neurosci 35(9), 2015
PMID: 25740535
Ache JM, Haupt SS, Dürr V., J Neurosci 35(9), 2015
PMID: 25740535
Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
Manoonpong P, Parlitz U, Wörgötter F., Front Neural Circuits 7(), 2013
PMID: 23408775
Manoonpong P, Parlitz U, Wörgötter F., Front Neural Circuits 7(), 2013
PMID: 23408775
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Theunissen LM, Dürr V., PLoS One 8(12), 2013
PMID: 24376877
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Dürr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
Krause AF, Dürr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
Descending control of turning behavior in the cockroach, Blaberus discoidalis.
Ridgel AL, Alexander BE, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(4), 2007
PMID: 17123086
Ridgel AL, Alexander BE, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(4), 2007
PMID: 17123086
Insect walking is based on a decentralized architecture revealing a simple and robust controller.
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ., Bioinspir Biomim 2(1), 2007
PMID: 17671322
Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ., Bioinspir Biomim 2(1), 2007
PMID: 17671322
Adaptive motor behavior in insects.
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Goal-driven behavioral adaptations in gap-climbing Drosophila.
Pick S, Strauss R., Curr Biol 15(16), 2005
PMID: 16111941
Pick S, Strauss R., Curr Biol 15(16), 2005
PMID: 16111941
Leg coordination during turning on an extremely narrow substrate in a bug, Mesocerus marginatus (Heteroptera, Coreidae).
Frantsevich LI, Cruse H., J Insect Physiol 51(10), 2005
PMID: 16162355
Frantsevich LI, Cruse H., J Insect Physiol 51(10), 2005
PMID: 16162355
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
Mu L, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(11), 2005
PMID: 16258746
Mu L, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(11), 2005
PMID: 16258746
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
5 References
Daten bereitgestellt von Europe PubMed Central.
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Stereotypic leg searching movements in the stick insect: kinematic analysis, behavioural context and simulation.
Durr V., J. Exp. Biol. 204(Pt 9), 2001
PMID: 11398748
Durr V., J. Exp. Biol. 204(Pt 9), 2001
PMID: 11398748
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 14735308
PubMed | Europe PMC
Suchen in