Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg

Akay T, Haehn S, Schmitz J, Büschges A (2004)
Journal of Neurophysiology 92(1): 42-51.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
During stance and swing phase of a walking stick insect, the retractor coxae (RetCx) and protractor coxae (ProCx) motoneurons and muscles supplying the thorax-coxa (TC)-joint generate backward and forward movements of the leg. Their activity is tightly coupled to the movement of the more distal leg segments, i.e., femur, tibia, and tarsus. We used the single middle leg preparation to study how this coupling is generated. With only the distal leg segments of the middle leg being free to move, motoneuronal activity of the de-afferented and -efferented TC-joint is similarly coupled to leg stepping. RetCx motoneurons are active during stance and ProCx motoneurons during swing. We studied whether sensory signals are involved in this coordination of TC-joint motoneuronal activity. Ablation of the load measuring campaniform sensilla (CS) revealed that they substantially contribute to the coupling of TC-joint motoneuronal activity to leg stepping. Individually ablating trochanteral and femoral CS revealed the trochanteral CS to be necessary for establishing the coupling between leg stepping and coxal motoneuron activity. When the locomotor system was active and generated alternating bursts of activity in ProCx and RetCx motoneurons, stimulation of the CS by rearward bending of the femur in otherwise de-afferented mesothoracic ganglion terminated ongoing ProCx motoneuronal activity and initiated RetCx motoneuronal activity. We show that cuticular strain signals from the trochanteral CS play a major role in shaping TC-joint motoneuronal activity during walking and contribute to their coordination with the stepping pattern of the distal leg joints. We present a model for the sensory control of timing of motoneuronal activity in walking movements of the single middle leg.
Erscheinungsjahr
Zeitschriftentitel
Journal of Neurophysiology
Band
92
Ausgabe
1
Seite(n)
42-51
ISSN
eISSN
PUB-ID

Zitieren

Akay T, Haehn S, Schmitz J, Büschges A. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology. 2004;92(1):42-51.
Akay, T., Haehn, S., Schmitz, J., & Büschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology, 92(1), 42-51. doi:10.1152/jn.01271.2003
Akay, T., Haehn, S., Schmitz, J., and Büschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology 92, 42-51.
Akay, T., et al., 2004. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology, 92(1), p 42-51.
T. Akay, et al., “Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg”, Journal of Neurophysiology, vol. 92, 2004, pp. 42-51.
Akay, T., Haehn, S., Schmitz, J., Büschges, A.: Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology. 92, 42-51 (2004).
Akay, Turgay, Haehn, S., Schmitz, Josef, and Büschges, A. “Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg”. Journal of Neurophysiology 92.1 (2004): 42-51.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
Szczecinski NS, Quinn RD., Biol Cybern 112(1-2), 2018
PMID: 28782078
Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control.
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE., Front Behav Neurosci 11(), 2017
PMID: 28174527
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
Sensory feedback in cockroach locomotion: current knowledge and open questions.
Ayali A, Couzin-Fuchs E, David I, Gal O, Holmes P, Knebel D., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(9), 2015
PMID: 25432627
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931
Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed.
Rosenbaum P, Schmitz J, Schmidt J, Büschges A., J Neurophysiol 114(2), 2015
PMID: 26063769
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
A neuromechanical model for the neuronal basis of curve walking in the stick insect.
Knops S, Tóth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S., J Neurophysiol 109(3), 2013
PMID: 23136343
A laser-supported lowerable surface setup to study the role of ground contact during stepping.
Berendes V, Dübbert M, Bockemühl T, Schmitz J, Büschges A, Gruhn M., J Neurosci Methods 215(2), 2013
PMID: 23562598
A neuromechanical model explaining forward and backward stepping in the stick insect.
Tóth TI, Knops S, Daun-Gruhn S., J Neurophysiol 107(12), 2012
PMID: 22402652
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Büschges A., J Neurophysiol 108(5), 2012
PMID: 22673329
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
Zill SN, Büschges A, Schmitz J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8), 2011
PMID: 21544617
Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
Borgmann A, Toth TI, Gruhn M, Daun-Gruhn S, Büschges A., Biol Cybern 105(5-6), 2011
PMID: 22290138
Dominance of local sensory signals over inter-segmental effects in a motor system: modeling studies.
Daun-Gruhn S, Tóth TI, Borgmann A., Biol Cybern 105(5-6), 2011
PMID: 22290139
Organizing network action for locomotion: insights from studying insect walking.
Büschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2008
PMID: 17888515
Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics.
Karbowski J, Schindelman G, Cronin CJ, Seah A, Sternberg PW., J Comput Neurosci 24(3), 2008
PMID: 17768672
Insect walking is based on a decentralized architecture revealing a simple and robust controller.
Cruse H, Dürr V, Schmitz J., Philos Trans A Math Phys Eng Sci 365(1850), 2007
PMID: 17148058
Adaptive motor behavior in insects.
Ritzmann RE, Büschges A., Curr Opin Neurobiol 17(6), 2007
PMID: 18308559
Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
Gruhn M, Hoffmann O, Dübbert M, Scharstein H, Büschges A., J Neurosci Methods 158(2), 2006
PMID: 16824615
Insights from models of rhythmic motor systems.
Prinz AA., Curr Opin Neurobiol 16(6), 2006
PMID: 17056249
Intersegmental coordination of walking movements in stick insects.
Ludwar BCh, Göritz ML, Schmidt J., J Neurophysiol 93(3), 2005
PMID: 15525808
Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
Ludwar BCh, Westmark S, Büschges A, Schmidt J., J Neurophysiol 94(4), 2005
PMID: 16000520
Invertebrate central pattern generation moves along.
Marder E, Bucher D, Schulz DJ, Taylor AL., Curr Biol 15(17), 2005
PMID: 16139202
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
Mu L, Ritzmann RE., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(11), 2005
PMID: 16258746
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
Different sensory systems share projection neurons but elicit distinct motor patterns.
Blitz DM, Beenhakker MP, Nusbaum MP., J Neurosci 24(50), 2004
PMID: 15601944

54 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677

AUTHOR UNKNOWN, 0
Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
Bucher D, Akay T, DiCaprio RA, Buschges A., J. Neurophysiol. 89(3), 2003
PMID: 12626610

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The functional sense of central oscillations in walking.
Cruse H., Biol Cybern 86(4), 2002
PMID: 11956808

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766

AUTHOR UNKNOWN, 0
Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
Fischer H, Schmidt J, Haas R, Buschges A., J. Neurophysiol. 85(1), 2001
PMID: 11152734

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Sensorimotor pathways involved in interjoint reflex action of an insect leg.
Hess D, Buschges A., J. Neurobiol. 33(7), 1997
PMID: 9407012

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Common principles of motor control in vertebrates and invertebrates.
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
Proprioceptive regulation of locomotion.
Pearson KG., Curr. Opin. Neurobiol. 5(6), 1995
PMID: 8805415
Neural adaptation in the generation of rhythmic behavior.
Pearson KG., Annu. Rev. Physiol. 62(), 2000
PMID: 10845109

AUTHOR UNKNOWN, 0
Positive force feedback control of muscles.
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212270
Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
Ridgel AL, Frazier SF, DiCaprio RA, Zill SN., J. Comp. Physiol. A 186(4), 2000
PMID: 10798724

AUTHOR UNKNOWN, 0
An improved electrode design for en passant recording from small nerves.
Schmitz J, Buschges A, Delcomyn F., Comp Biochem Physiol A Comp Physiol 91(4), 1988
PMID: 2907444
A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties.
Schmitz J, Dean J, Kindermann T, Schumm M, Cruse H., Biol. Bull. 200(2), 2001
PMID: 11341583

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Load signalling by cockroach trochanteral campaniform sensilla.
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 14999042
PubMed | Europe PMC

Suchen in

Google Scholar