Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases

BECKER A, KLEICKMANN A, KUESTER H, KELLER M, Arnold W, Pühler A (1993)
Mol Plant Microbe Interact 6(6): 735-744.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
BECKER, A; KLEICKMANN, A; KUESTER, H; KELLER, M; Arnold, WalterUniBi; Pühler, AlfredUniBi
Abstract / Bemerkung
Sequence analysis of a 5.780-kb DNA fragment originating from megaplasmid 2 of Rhizobium meliloti 2011 involved in biosynthesis of exopolysaccharide I (EPS I) and invasion of alfalfa nodules revealed the presence of five exo genes designated exoU, exoV, exoW, exoT, and exoI. ExoT resembled transmembrane proteins, whereas ExoI displayed a characteristic signal peptide. Sequence comparisons with several polysaccharide-polymerizing enzymes of both prokaryotic and eukaryotic origin indicated that exoW and exoU encode glucosyltransferases. Moreover, ExoV displayed weak homologies to the ExoO, ExoA, ExoL, and ExoM proteins of R. meliloti, which are also discussed as glucosyltransferases. Using exo-lacZ transcription fusions in connection with plasmid integration mutagenesis, promoters were identified in front of exoI, exoT, exoW, exoV, and exoU. R. meliloti 2011 strains with mutations in exoT, exoW, exoV, and exoU produced no detectable EPS I and were unable to infect alfalfa nodules, whereas exoI mutants synthesized a reduced amount of EPS I and did infect alfalfa nodules.
Erscheinungsjahr
1993
Zeitschriftentitel
Mol Plant Microbe Interact
Band
6
Ausgabe
6
Seite(n)
735-744
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/1644297

Zitieren

BECKER A, KLEICKMANN A, KUESTER H, KELLER M, Arnold W, Pühler A. Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact. 1993;6(6):735-744.
BECKER, A., KLEICKMANN, A., KUESTER, H., KELLER, M., Arnold, W., & Pühler, A. (1993). Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact, 6(6), 735-744. https://doi.org/10.1094/MPMI-6-735
BECKER, A, KLEICKMANN, A, KUESTER, H, KELLER, M, Arnold, Walter, and Pühler, Alfred. 1993. “Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases”. Mol Plant Microbe Interact 6 (6): 735-744.
BECKER, A., KLEICKMANN, A., KUESTER, H., KELLER, M., Arnold, W., and Pühler, A. (1993). Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact 6, 735-744.
BECKER, A., et al., 1993. Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact, 6(6), p 735-744.
A. BECKER, et al., “Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases”, Mol Plant Microbe Interact, vol. 6, 1993, pp. 735-744.
BECKER, A., KLEICKMANN, A., KUESTER, H., KELLER, M., Arnold, W., Pühler, A.: Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact. 6, 735-744 (1993).
BECKER, A, KLEICKMANN, A, KUESTER, H, KELLER, M, Arnold, Walter, and Pühler, Alfred. “Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases”. Mol Plant Microbe Interact 6.6 (1993): 735-744.

28 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants.
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A., Genes (Basel) 8(12), 2017
PMID: 29194398
Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae-Pisum sativum symbiosis.
Ivashina TV, Fedorova EE, Ashina NP, Kalinchuk NA, Druzhinina TN, Shashkov AS, Shibaev VN, Ksenzenko VN., J Appl Microbiol 109(2), 2010
PMID: 20233262
Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems.
Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quéré A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Röser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR., Appl Environ Microbiol 75(12), 2009
PMID: 19376903
Resistance mapping and mode of action of a novel class of antibacterial anthranilic acids: evidence for disruption of cell wall biosynthesis.
Mott JE, Shaw BA, Smith JF, Bonin PD, Romero DL, Marotti KR, Miller AA., J Antimicrob Chemother 62(4), 2008
PMID: 18567575
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center.
Roumiantseva ML, Andronov EE, Sharypova LA, Dammann-Kalinowski T, Keller M, Young JP, Simarov BV., Appl Environ Microbiol 68(9), 2002
PMID: 12200335
Genetic characterization of a Sinorhizobium meliloti chromosomal region in lipopolysaccharide biosynthesis.
Lagares A, Hozbor DF, Niehaus K, Otero AJ, Lorenzen J, Arnold W, Pühler A., J Bacteriol 183(4), 2001
PMID: 11157937
Molecular basis of symbiotic promiscuity.
Perret X, Staehelin C, Broughton WJ., Microbiol Mol Biol Rev 64(1), 2000
PMID: 10704479
Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA.
Guerreiro N, Ksenzenko VN, Djordjevic MA, Ivashina TV, Rolfe BG., J Bacteriol 182(16), 2000
PMID: 10913086
The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.
Becker A, Rüberg S, Küster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A., J Bacteriol 179(4), 1997
PMID: 9023225
Rhizobium extracellular structures in the symbiosis.
Coronado C, Sanchez-Andujar B, Palomares AJ., World J Microbiol Biotechnol 12(2), 1996
PMID: IND20572537
Rhizobium extracellular structures in the symbiosis.
Coronado C, Sánchez-Andújar B, Palomares AJ., World J Microbiol Biotechnol 12(2), 1996
PMID: 24415160
A molecular characterization of the Gunnera-Nostoc symbiosis: comparison with Rhizobium- and Agrobacterium-plant interactions.
Rasmussen U, Johansson C, Renglin A, Petersson C, Bergman B., New Phytol 133(3), 1996
PMID: IND20626047

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 8118055
PubMed | Europe PMC

Suchen in

Google Scholar