MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN

KELLER M, ROXLAU A, WENG WM, SCHMIDT M, QUANDT J, Niehaus K, Jording D, Arnold W, Pühler A (1995)
MOLECULAR PLANT-MICROBE INTERACTIONS 8(2): 267-277.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
KELLER, M; ROXLAU, A; WENG, WM; SCHMIDT, M; QUANDT, J; Niehaus, KarstenUniBi; Jording, DorisUniBi; Arnold, WalterUniBi; Pühler, AlfredUniBi
Abstract / Bemerkung
The Rhizobium meliloti Tn5 mutant Rm3131, producing galactoglucan (EPS II) instead of succinoglycan (EPS I), was complemented by a 3.6-kb EcoRI-fragment of the Rhizobium meliloti genome. Sequencing of this fragment revealed six open reading frames (ORFs). The ORF found to be affected in the mutant Rm3131 codes for a putative protein of 15.7 kDa and forms a monocistronic transcriptional unit. Further genetic analysis revealed that the gene mutated in Rm3131 is identical to the previously described R. meliloti mucR gene (H. Zhan, S. B. Levery, C. C. Lee, and J. A. Leigh, 1989, Proc. Natl. Acad. Sci. USA 86:3055-3059). By hybridization it was shown that a mucR homologous gene is present in several rhizobacteria. The deduced amino acid sequence of MucR showed nearly 80% identity to the Agrobacterium tumefaciens Ros protein, a negative regulator of vir genes and necessary for succinoglycan production. MucR contains like Ros a putative zinc finger sequence of the C2H2 type. Transcriptional fusions of genes for EPS I and EPS II synthesis, the so-called exo and exp genes, with the marker gene lacZ were used to delineate the role of mucR for exo and exp gene expression. It was found that exp genes are negatively regulated by MucR on the transcriptional level, whereas a posttranscriptional regulation by MucR is assumed for exo genes. Furthermore, mucR is negatively regulating its own transcription.
Stichworte
SYMBIOSIS; GENE REGULATION; EXOPOLYSACCHARIDE SYNTHESIS
Erscheinungsjahr
1995
Zeitschriftentitel
MOLECULAR PLANT-MICROBE INTERACTIONS
Band
8
Ausgabe
2
Seite(n)
267-277
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/1641112

Zitieren

KELLER M, ROXLAU A, WENG WM, et al. MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN. MOLECULAR PLANT-MICROBE INTERACTIONS. 1995;8(2):267-277.
KELLER, M., ROXLAU, A., WENG, W. M., SCHMIDT, M., QUANDT, J., Niehaus, K., Jording, D., et al. (1995). MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN. MOLECULAR PLANT-MICROBE INTERACTIONS, 8(2), 267-277. https://doi.org/10.1094/MPMI-8-0267
KELLER, M, ROXLAU, A, WENG, WM, SCHMIDT, M, QUANDT, J, Niehaus, Karsten, Jording, Doris, Arnold, Walter, and Pühler, Alfred. 1995. “MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN”. MOLECULAR PLANT-MICROBE INTERACTIONS 8 (2): 267-277.
KELLER, M., ROXLAU, A., WENG, W. M., SCHMIDT, M., QUANDT, J., Niehaus, K., Jording, D., Arnold, W., and Pühler, A. (1995). MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN. MOLECULAR PLANT-MICROBE INTERACTIONS 8, 267-277.
KELLER, M., et al., 1995. MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN. MOLECULAR PLANT-MICROBE INTERACTIONS, 8(2), p 267-277.
M. KELLER, et al., “MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 8, 1995, pp. 267-277.
KELLER, M., ROXLAU, A., WENG, W.M., SCHMIDT, M., QUANDT, J., Niehaus, K., Jording, D., Arnold, W., Pühler, A.: MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN. MOLECULAR PLANT-MICROBE INTERACTIONS. 8, 267-277 (1995).
KELLER, M, ROXLAU, A, WENG, WM, SCHMIDT, M, QUANDT, J, Niehaus, Karsten, Jording, Doris, Arnold, Walter, and Pühler, Alfred. “MOLECULAR ANALYSIS OF THE RHIZOBIUM-MELILOTI MUCR GENE REGULATING THE BIOSYNTHESIS OF THE EXOPOLYSACCHARIDES SUCCINOGLYCAN AND GALACTOGLUCAN”. MOLECULAR PLANT-MICROBE INTERACTIONS 8.2 (1995): 267-277.

49 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Extracellular polysaccharide protects Rhizobium leguminosarum cells against zinc stress in vitro and during symbiosis with clover.
Kopycińska M, Lipa P, Cieśla J, Kozieł M, Janczarek M., Environ Microbiol Rep 10(3), 2018
PMID: 29633524
Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation.
Pirone L, Pitzer JE, D'Abrosca G, Fattorusso R, Malgieri G, Pedone EM, Pedone PV, Roop RM, Baglivo I., Sci Rep 8(1), 2018
PMID: 30467359
Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants.
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A., Genes (Basel) 8(12), 2017
PMID: 29194398
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, Søgaard-Andersen L, Becker A., J Bacteriol 198(3), 2016
PMID: 26574513
Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner.
Acosta-Jurado S, Navarro-Gómez P, Murdoch Pdel S, Crespo-Rivas JC, Jie S, Cuesta-Berrio L, Ruiz-Sainz JE, Rodríguez-Carvajal MÁ, Vinardell JM., PLoS One 11(8), 2016
PMID: 27486751
The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.
Rachwał K, Boguszewska A, Kopcińska J, Karaś M, Tchórzewski M, Janczarek M., Front Microbiol 7(), 2016
PMID: 27602024
Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies.
Schmid J, Sieber V, Rehm B., Front Microbiol 6(), 2015
PMID: 26074894
The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart.
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C., FEBS J 282(23), 2015
PMID: 26365095
Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308.
Caswell CC, Elhassanny AE, Planchin EE, Roux CM, Weeks-Gorospe JN, Ficht TA, Dunman PM, Roop RM., Infect Immun 81(4), 2013
PMID: 23319565
The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.
Wang D, Xue H, Wang Y, Yin R, Xie F, Luo L., Appl Environ Microbiol 79(23), 2013
PMID: 24038694
Insights from the architecture of the bacterial transcription apparatus.
Iyer LM, Aravind L., J Struct Biol 179(3), 2012
PMID: 22210308
A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.
Sorroche FG, Spesia MB, Zorreguieta A, Giordano W., Appl Environ Microbiol 78(12), 2012
PMID: 22492433
Functional genomics of dichloromethane utilization in Methylobacterium extorquens DM4.
Muller EE, Hourcade E, Louhichi-Jelail Y, Hammann P, Vuilleumier S, Bringel F., Environ Microbiol 13(9), 2011
PMID: 21854516
An integrated view of biofilm formation in rhizobia.
Rinaudi LV, Giordano W., FEMS Microbiol Lett 304(1), 2010
PMID: 19930462
EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells.
Sorroche FG, Rinaudi LV, Zorreguieta A, Giordano W., Curr Microbiol 61(5), 2010
PMID: 20383768
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti.
Gibson KE, Campbell GR, Lloret J, Walker GC., J Bacteriol 188(12), 2006
PMID: 16740957
Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti.
Marketon MM, Glenn SA, Eberhard A, González JE., J Bacteriol 185(1), 2003
PMID: 12486070
A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC., J Bacteriol 184(18), 2002
PMID: 12193623
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center.
Roumiantseva ML, Andronov EE, Sharypova LA, Dammann-Kalinowski T, Keller M, Young JP, Simarov BV., Appl Environ Microbiol 68(9), 2002
PMID: 12200335
The origin of prokaryotic C2H2 zinc finger regulators.
Bouhouche N, Syvanen M, Kado CI., Trends Microbiol 8(2), 2000
PMID: 10664601
Identification of genes in the RosR regulon of Rhizobium etli.
Bittinger MA, Handelsman J., J Bacteriol 182(6), 2000
PMID: 10692377
Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
Pellock BJ, Cheng HP, Walker GC., J Bacteriol 182(15), 2000
PMID: 10894742
Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA.
Guerreiro N, Ksenzenko VN, Djordjevic MA, Ivashina TV, Rolfe BG., J Bacteriol 182(16), 2000
PMID: 10913086
PCR use of highly conserved DNA regions for identification of Sinorhizobium meliloti.
Sánchez-Contreras M, Lloret J, Martín M, Villacieros M, Bonilla I, Rivilla R., Appl Environ Microbiol 66(8), 2000
PMID: 10919829
Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1.
Lloret J, Wulff BB, Rubio JM, Downie JA, Bonilla I, Rivilla R., Appl Environ Microbiol 64(3), 1998
PMID: 9501442
The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.
Becker A, Rüberg S, Küster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A., J Bacteriol 179(4), 1997
PMID: 9023225
Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.
González JE, Reuhs BL, Walker GC., Proc Natl Acad Sci U S A 93(16), 1996
PMID: 8710923

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 7756693
PubMed | Europe PMC

Suchen in

Google Scholar