A fast, three-layer neural network for path finding
Kindermann T, Cruse H, Dautenhahn K (1996)
Network. Computation in neural systems 7(2): 423-436.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kindermann, T.;
Cruse, HolkUniBi;
Dautenhahn, K.
Einrichtung
Abstract / Bemerkung
A path-planning algorithm is proposed to find a path based on local rules applied to a three-layer artificial neural network. Each layer consists of two-dimensionally arranged neurons with recurrent connections within a limited neighbourhood. The output of one layer determines the weights of the connections in the next layer. In principle, the method is based on a diffusion process, but is modified such that it does not suffer from several drawbacks involved in this algorithm. By application of a nonlinear transformation in layer 2, the diffusion front has the qualitative properties of a propagation wave. Therefore, limited resolution of the units is not critical, in contrast to classical diffusion algorithms. Furthermore, the algorithm generally does not suffer from the superposition of diffusion gradients when several paths are possible. The diffusion takes place in a space covered with 'obstacle potentials' which decrease the velocity of the diffusion front. In this way the path can maintain an adjustable safety margin in relation to the obstacles, for example, to cope with problems of incomplete knowledge of the obstacle's position. The algorithm thus combines the advantages of the diffusion algorithm, namely avoidance of local minima of wave propagation, i.e. coping with limited resolution, and the potential field approach, i.e. maintaining a safety margin in relation to obstacles. The distributed architecture also allows for 'spatial interpolation' between the units (coarse coding), thereby providing smooth path forms. A comparison with paths developed by human subjects shows some similarity on the qualitative level, but there are also obvious differences.
Erscheinungsjahr
1996
Zeitschriftentitel
Network. Computation in neural systems
Band
7
Ausgabe
2
Seite(n)
423-436
ISSN
0954-898X
eISSN
1361-6536
Page URI
https://pub.uni-bielefeld.de/record/1638979
Zitieren
Kindermann T, Cruse H, Dautenhahn K. A fast, three-layer neural network for path finding. Network. Computation in neural systems. 1996;7(2):423-436.
Kindermann, T., Cruse, H., & Dautenhahn, K. (1996). A fast, three-layer neural network for path finding. Network. Computation in neural systems, 7(2), 423-436. https://doi.org/10.1088/0954-898X/7/2/022
Kindermann, T., Cruse, Holk, and Dautenhahn, K. 1996. “A fast, three-layer neural network for path finding”. Network. Computation in neural systems 7 (2): 423-436.
Kindermann, T., Cruse, H., and Dautenhahn, K. (1996). A fast, three-layer neural network for path finding. Network. Computation in neural systems 7, 423-436.
Kindermann, T., Cruse, H., & Dautenhahn, K., 1996. A fast, three-layer neural network for path finding. Network. Computation in neural systems, 7(2), p 423-436.
T. Kindermann, H. Cruse, and K. Dautenhahn, “A fast, three-layer neural network for path finding”, Network. Computation in neural systems, vol. 7, 1996, pp. 423-436.
Kindermann, T., Cruse, H., Dautenhahn, K.: A fast, three-layer neural network for path finding. Network. Computation in neural systems. 7, 423-436 (1996).
Kindermann, T., Cruse, Holk, and Dautenhahn, K. “A fast, three-layer neural network for path finding”. Network. Computation in neural systems 7.2 (1996): 423-436.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
15 References
Daten bereitgestellt von Europe PubMed Central.
How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers.
Baldi P, Heiligenberg W., Biol Cybern 59(4-5), 1988
PMID: 3196776
Baldi P, Heiligenberg W., Biol Cybern 59(4-5), 1988
PMID: 3196776
A network model for the control of the movement of a redundant manipulator.
Bruwer M, Cruse H., Biol Cybern 62(6), 1990
PMID: 2357476
Bruwer M, Cruse H., Biol Cybern 62(6), 1990
PMID: 2357476
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Control of human arm movements in two dimensions: paths and joint control in avoiding simple linear obstacles.
Dean J, Bruwer M., Exp Brain Res 97(3), 1994
PMID: 8187861
Dean J, Bruwer M., Exp Brain Res 97(3), 1994
PMID: 8187861
AUTHOR UNKNOWN, 0
The coordination of arm movements: an experimentally confirmed mathematical model.
Flash T, Hogan N., J. Neurosci. 5(7), 1985
PMID: 4020415
Flash T, Hogan N., J. Neurosci. 5(7), 1985
PMID: 4020415
AUTHOR UNKNOWN, 0
Hinton, 1986
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Tietz, Dissertation (), 1995
Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model.
Uno Y, Kawato M, Suzuki R., Biol Cybern 61(2), 1989
PMID: 2742921
Uno Y, Kawato M, Suzuki R., Biol Cybern 61(2), 1989
PMID: 2742921
How vernier acuity depends on contrast.
Wehrhahn C, Westheimer G., Exp Brain Res 80(3), 1990
PMID: 2387359
Wehrhahn C, Westheimer G., Exp Brain Res 80(3), 1990
PMID: 2387359
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 16754402
PubMed | Europe PMC
Suchen in