Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects

Kittmann R, Schmitz J, Büschges A (1996)
Journal of Neurobiology 31(4): 512-532.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
We investigated the role of local nonspiking interneurons involved in motor control of legs in the stick insect, Carausius morosus. In a preparation that allowed the animals to perform active leg movements such as adaptive tactile reflexes, proprioceptive reflexes, and walking, we gathered the following results. Almost all tested nonspiking interneurons that provide synaptic drive onto motoneurons of the proximal leg muscles contribute to all of the motor programs underlying tactile reflexes and voluntary leg movements such as walking, searching, and rocking. Most of them are also involved in the generation of proprioceptive reflexes. All motor programs for coactivation, avoidance reflexes, resistance reflexes, and voluntary leg movements result from parallel pathways including nonspiking interneurons that support and others that oppose the motoneuronal activity. The contribution of a single interneuron to the different motor programs is specific: it can be supporting for one motor program but opposing for the other. Even for the same motor program, for example, coactivation, the contribution of an individual interneuron can depend on the stimulus site from where the response is elicited. Our results support the idea that the different motor patterns for adaptive tactile reflexes, resistance reflexes, and voluntary leg movements emerge from a multifunctional neuronal circuit that is reorganized corresponding to the motor behavior performed. The actual motor pattern is then shaped by distributed information processing in parallel supporting and opposing pathways. (C) 1996 John Wiley & Sons, Inc.
Erscheinungsjahr
Zeitschriftentitel
Journal of Neurobiology
Band
31
Ausgabe
4
Seite(n)
512-532
ISSN
PUB-ID

Zitieren

Kittmann R, Schmitz J, Büschges A. Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology. 1996;31(4):512-532.
Kittmann, R., Schmitz, J., & Büschges, A. (1996). Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology, 31(4), 512-532. doi:10.1002/(SICI)1097-4695(199612)31:4<512::AID-NEU10>3.0.CO;2-F
Kittmann, R., Schmitz, J., and Büschges, A. (1996). Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology 31, 512-532.
Kittmann, R., Schmitz, J., & Büschges, A., 1996. Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology, 31(4), p 512-532.
R. Kittmann, J. Schmitz, and A. Büschges, “Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects”, Journal of Neurobiology, vol. 31, 1996, pp. 512-532.
Kittmann, R., Schmitz, J., Büschges, A.: Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects. Journal of Neurobiology. 31, 512-532 (1996).
Kittmann, Ralf, Schmitz, Josef, and Büschges, Ansgar. “Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects”. Journal of Neurobiology 31.4 (1996): 512-532.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
Stein W, Büschges A, Bässler U., J Neurobiol 66(11), 2006
PMID: 16902990
Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
Ludwar BCh, Westmark S, Büschges A, Schmidt J., J Neurophysiol 94(4), 2005
PMID: 16000520
Insect walking and robotics.
Delcomyn F., Annu Rev Entomol 49(), 2004
PMID: 14651456
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol Rev 80(1), 2000
PMID: 10617766
Central control components of a 'simple' stretch reflex.
Clarac F, Cattaert D, Le Ray D., Trends Neurosci 23(5), 2000
PMID: 10782125

63 References

Daten bereitgestellt von Europe PubMed Central.


Appenteng, 1991

Bässler, Biol. Cybern. 24(), 1976

Bässler, 1983

Bässler, J. Exp. Biol. 136(), 1988

Blight, Phil. Trans. R. Soc. Lond. 290(), 1980
Local circuits for the control of leg movements in an insect.
Burrows M., Trends Neurosci. 15(6), 1992
PMID: 1378667

Burrows, 1989

Büschges, J. Exp. Biol. 151(), 1990

Büschges, Verh. Dtsch. Zool. Ges. 88(), 1995

Büschges, J. Comp. Physiol. 174(), 1994

Cruse, 1995

Driesang, J. Comp. Physiol. A 149(), 1996

Eaton, 1984

El, J. Comp. Physiol. 168(), 1991

Fricke, 1988

Godden, Physiol. Entomol. 9(), 1984

Graham, Biol. Cybern. 32(), 1979

von, J. Comp. Physiol. 122(), 1977
Neural networks and physical systems with emergent collective computational abilities.
Hopfield JJ., Proc. Natl. Acad. Sci. U.S.A. 79(8), 1982
PMID: 6953413
Distributed motor commands in the limb premotor network.
Houk JC, Keifer J, Barto AG., Trends Neurosci. 16(1), 1993
PMID: 7679234
The neuroethology of acoustic startle and escape in flying insects.
Hoy R, Nolen T, Brodfuehrer P., J. Exp. Biol. 146(), 1989
PMID: 2689567

Kittmann, J. Exp. Biol. 157(), 1991

Kittmann, J. Exp. Biol. (), 1996

Kohonen, 1977

Laurent, J. Comp. Physiol. 162(), 1988

Liddell, Proc. R. Soc. Lond. B 96(), 1924

Lockery, 1993

Marquardt, Zool. Jb. Abt. Anat. Ont. Tiere 66(), 1940
How we control the contraction of our muscles.
Merton PA., Sci. Am. 226(5), 1972
PMID: 4260739

Milde, J. Comp. Physiol. 162(), 1988
Neural architectures for adaptive behavior.
Morton DW, Chiel HJ., Trends Neurosci. 17(10), 1994
PMID: 7530879
Opposing parallel connections through crayfish local nonspiking interneurons.
Nagayama T, Hisada M., J. Comp. Neurol. 257(3), 1987
PMID: 3558893
Parallel distributed network characteristics of the DSCT.
Osborn CE, Poppele RE., J. Neurophysiol. 68(4), 1992
PMID: 1432071
Common principles of motor control in vertebrates and invertebrates.
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
Connexions between hair-plate afferents and motoneurones in the cockroach leg.
Pearson KG, Wong RK, Fourtner CR., J. Exp. Biol. 64(1), 1976
PMID: 5571
Sensorimotor gain control: a basic strategy of motor systems?
Prochazka A., Prog. Neurobiol. 33(4), 1989
PMID: 2682784

Rumelhart, 1986

Sauer, J. Comp. Physiol. A 177(), 1995

Schmitz, 1985

Schmitz, Verh. Dtsch. Zool. Ges. 88(), 1995
An improved electrode design for en passant recording from small nerves.
Schmitz J, Buschges A, Delcomyn F., Comp Biochem Physiol A Comp Physiol 91(4), 1988
PMID: 2907444
Intracellular recordings from nonspiking interneurons in a semiintact, tethered walking insect.
Schmitz J, Buschges A, Kittmann R., J. Neurobiol. 22(9), 1991
PMID: 1724457

Schmitz, J. Exp. Biol. 143(), 1989

Siegler, Adv. Insect Physiol. 18(), 1985
Reflex pathways responsive to depression of the locust coxotrochanteral joint.
Skorupski P, Hustert R., J. Exp. Biol. 158(), 1991
PMID: 1919417

Theophilidis, J. Insect Physiol. 36(), 1990

Wendler, Z. Vergl. Physiol. 48(), 1964

Wiens, J. Comp. Phyisol. 107(), 1976

Wine, J. Comp. Physiol. 121(), 1977
Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex.
Zecevic D, Wu JY, Cohen LB, London JA, Hopp HP, Falk CX., J. Neurosci. 9(10), 1989
PMID: 2795148

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 8951108
PubMed | Europe PMC

Suchen in

Google Scholar