Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum

Barreiro C, Nakunst D, Hueser AT, de Paz HD, Kalinowski J, Martin JF (2009)
MICROBIOLOGY-SGM 155(2): 359-372.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Barreiro, Carlos; Nakunst, Diana; Hueser, Andrea T.; de Paz, Hector D.; Kalinowski, JörnUniBi; Martin, Juan F.
Abstract / Bemerkung
Genome-wide transcription profile analysis of the heat-shocked wild-type strain under moderate (40 degrees C) and severe heat stress (50 degrees C) revealed that a large number of genes are differentially expressed after heat shock. Of these, 358 genes were upregulated and 420 were downregulated in response to moderate heat shock (40 degrees C) in Corynebacterium glutamicum. Our results confirmed the HrcA/controlling inverted repeat of chaperone expression (CIRCE)-dependent and HspR/HspR-associated inverted repeat (HAIR)-dependent upregulation of chaperones following heat shock. Other genes, including clusters of orthologous groups (COG) related to macromolecule biosynthesis and several transcriptional regulators (COG class K), were upregulated, explaining the large number of genes affected by heat shock. Mutants having deletions in the hrcA or hspR regulators were constructed, which allowed the complete identification of the genes controlled by those systems. The up- or downregulation of several genes observed in the microarray experiments was validated by Northern blot analyses and quantitative (real-time) reverse-transcription PCR. These analyses showed a heat-shock intensity-dependent response ('differential response') in the HspR/HAIR system, in contrast to the non-differential response shown by the HrcA/CIRCE-regulated genes.
Erscheinungsjahr
2009
Zeitschriftentitel
MICROBIOLOGY-SGM
Band
155
Ausgabe
2
Seite(n)
359-372
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/1635517

Zitieren

Barreiro C, Nakunst D, Hueser AT, de Paz HD, Kalinowski J, Martin JF. Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. MICROBIOLOGY-SGM. 2009;155(2):359-372.
Barreiro, C., Nakunst, D., Hueser, A. T., de Paz, H. D., Kalinowski, J., & Martin, J. F. (2009). Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. MICROBIOLOGY-SGM, 155(2), 359-372. https://doi.org/10.1099/mic.0.019299-0
Barreiro, Carlos, Nakunst, Diana, Hueser, Andrea T., de Paz, Hector D., Kalinowski, Jörn, and Martin, Juan F. 2009. “Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum”. MICROBIOLOGY-SGM 155 (2): 359-372.
Barreiro, C., Nakunst, D., Hueser, A. T., de Paz, H. D., Kalinowski, J., and Martin, J. F. (2009). Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. MICROBIOLOGY-SGM 155, 359-372.
Barreiro, C., et al., 2009. Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. MICROBIOLOGY-SGM, 155(2), p 359-372.
C. Barreiro, et al., “Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum”, MICROBIOLOGY-SGM, vol. 155, 2009, pp. 359-372.
Barreiro, C., Nakunst, D., Hueser, A.T., de Paz, H.D., Kalinowski, J., Martin, J.F.: Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. MICROBIOLOGY-SGM. 155, 359-372 (2009).
Barreiro, Carlos, Nakunst, Diana, Hueser, Andrea T., de Paz, Hector D., Kalinowski, Jörn, and Martin, Juan F. “Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum”. MICROBIOLOGY-SGM 155.2 (2009): 359-372.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sequence determinants of prokaryotic gene expression level under heat stress.
Xiong H, Yang Y, Hu XP, He YM, Ma BG., Gene 551(1), 2014
PMID: 25168890
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Protein turnover quantification in a multilabeling approach: from data calculation to evaluation.
Trötschel C, Albaum SP, Wolff D, Schröder S, Goesmann A, Nattkemper TW, Poetsch A., Mol Cell Proteomics 11(8), 2012
PMID: 22493176
Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition.
Meniche X, Labarre C, de Sousa-d'Auria C, Huc E, Laval F, Tropis M, Bayan N, Portevin D, Guilhot C, Daffé M, Houssin C., J Bacteriol 191(23), 2009
PMID: 19801408

73 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, J GEN APPL MICROBIOL 13(), 1967
Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.
Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF., Microbiology (Reading, Engl.) 152(Pt 1), 2006
PMID: 16385111
The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum.
Brinkrolf K, Brune I, Tauch A., J. Biotechnol. 129(2), 2006
PMID: 17227685
Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.
Chhabra SR, He Q, Huang KH, Gaucher SP, Alm EJ, He Z, Hadi MZ, Hazen TC, Wall JD, Zhou J, Arkin AP, Singh AK., J. Bacteriol. 188(5), 2006
PMID: 16484192
Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks.
Delaunay S, Lapujade P, Engasser JM, Goergen JL., J. Ind. Microbiol. Biotechnol. 28(6), 2002
PMID: 12032806
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Operator mutations of the Escherichia coli aroF gene.
Garner CC, Herrmann KM., J. Biol. Chem. 260(6), 1985
PMID: 2857723
Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G.
Grandvalet C, Servant P, Mazodier P., Mol. Microbiol. 23(1), 1997
PMID: 9004222
Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum.
Halgasova N, Bukovska G, Timko J, Kormanec J., Curr. Microbiol. 43(4), 2001
PMID: 11683358
The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response.
Halgasova N, Bukovska G, Ugorcakova J, Timko J, Kormanec J., FEMS Microbiol. Lett. 216(1), 2002
PMID: 12423756
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Global transcriptional response of Bacillus subtilis to heat shock.
Helmann JD, Wu MF, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C., J. Bacteriol. 183(24), 2001
PMID: 11717291
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Proteome analysis of Corynebacterium glutamicum.
Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Puhler A, Bendt AK, Kramer R, Burkovski A., Electrophoresis 22(9), 2001
PMID: 11425227
OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida.
Hishinuma S, Yuki M, Fujimura M, Fukumori F., Environ. Microbiol. 8(12), 2006
PMID: 17107553
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling.
Huser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisakova V, Patek M, Kalinowski J, Brune I, Puhler A, Tauch A., Appl. Environ. Microbiol. 71(6), 2005
PMID: 15933028
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Functional analysis of sigH expression in Corynebacterium glutamicum.
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 331(4), 2005
PMID: 15883048
Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources.
Koch DJ, Ruckert C, Rey DA, Mix A, Puhler A, Kalinowski J., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204527
Ribosomal RNA and ribosomal proteins in corynebacteria.
Martin JF, Barreiro C, Gonzalez-Lavado E, Barriuso M., J. Biotechnol. 104(1-3), 2003
PMID: 12948628
The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W., EMBO J. 16(15), 1997
PMID: 9303302
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O., J. Biotechnol. 98(2-3), 2002
PMID: 12141991
Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium.
Musatovova O, Dhandayuthapani S, Baseman JB., J. Bacteriol. 188(8), 2006
PMID: 16585746
A novel DNA element that controls bacterial heat shock gene expression.
Narberhaus F, Kaser R, Nocker A, Hennecke H., Mol. Microbiol. 28(2), 1998
PMID: 9622356
Multiple sigma factor genes in Brevibacterium lactofermentum: characterization of sigA and sigB.
Oguiza JA, Marcos AT, Malumbres M, Martin JF., J. Bacteriol. 178(2), 1996
PMID: 8550480
Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding.
Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M., Appl. Microbiol. Biotechnol. 62(1), 2003
PMID: 12835923
Global transcriptome analysis of the heat shock response of Bifidobacterium longum.
Rezzonico E, Lariani S, Barretto C, Cuanoud G, Giliberti G, Delley M, Arigoni F, Pessi G., FEMS Microbiol. Lett. 271(1), 2007
PMID: 17419761
Proteome analysis in the study of the bacterial heat-shock response.
Rosen R, Ron EZ., Mass Spectrom Rev 21(4), 2002
PMID: 12533799
The Bacillus subtilis heat shock stimulon.
Schumann W., Cell Stress Chaperones 8(3), 2003
PMID: 14984053
Negative regulation of the heat shock response in Streptomyces.
Servant P, Mazodier P., Arch. Microbiol. 176(4), 2001
PMID: 11685367
The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus.
Servant P, Grandvalet C, Mazodier P., Proc. Natl. Acad. Sci. U.S.A. 97(7), 2000
PMID: 10716740
DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum.
Silberbach M, Huser A, Kalinowski J, Puhler A, Walter B, Kramer R, Burkovski A., J. Biotechnol. 119(4), 2005
PMID: 15935503

AUTHOR UNKNOWN, Biotechnology 1(), 1983

Stewart, Microbiology (Reading, Engl.) 148(10), 2002
The COG database: a tool for genome-scale analysis of protein functions and evolution.
Tatusov RL, Galperin MY, Natale DA, Koonin EV., Nucleic Acids Res. 28(1), 2000
PMID: 10592175
Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora.
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Puhler A., J. Bacteriol. 187(13), 2005
PMID: 15968079
Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process.
Uy D, Delaunay S, Germain P, Engasser JM, Goergen JL., J. Biotechnol. 104(1-3), 2003
PMID: 12948637
How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators.
Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D., FEMS Microbiol. Rev. 30(5), 2006
PMID: 16911042

Wehmeier, Microbiology (Reading, Engl.) 147(3), 2001
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121
Heat shock proteins and antigens of Mycobacterium tuberculosis.
Young DB, Garbe TR., Infect. Immun. 59(9), 1991
PMID: 1679042
Regulation of the heat-shock response.
Yura T, Nakahigashi K., Curr. Opin. Microbiol. 2(2), 1999
PMID: 10322172
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19202085
PubMed | Europe PMC

Suchen in

Google Scholar