The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH

Hellweg C, Pühler A, Weidner S (2009)
BMC MICROBIOLOGY 9(1): 37.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Erscheinungsjahr
2009
Zeitschriftentitel
BMC MICROBIOLOGY
Band
9
Ausgabe
1
Seite(n)
37
ISSN
1471-2180
Page URI
https://pub.uni-bielefeld.de/record/1635309

Zitieren

Hellweg C, Pühler A, Weidner S. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC MICROBIOLOGY. 2009;9(1):37.
Hellweg, C., Pühler, A., & Weidner, S. (2009). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC MICROBIOLOGY, 9(1), 37. https://doi.org/10.1186/1471-2180-9-37
Hellweg, Christoph, Pühler, Alfred, and Weidner, Stefan. 2009. “The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH”. BMC MICROBIOLOGY 9 (1): 37.
Hellweg, C., Pühler, A., and Weidner, S. (2009). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC MICROBIOLOGY 9, 37.
Hellweg, C., Pühler, A., & Weidner, S., 2009. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC MICROBIOLOGY, 9(1), p 37.
C. Hellweg, A. Pühler, and S. Weidner, “The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH”, BMC MICROBIOLOGY, vol. 9, 2009, pp. 37.
Hellweg, C., Pühler, A., Weidner, S.: The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC MICROBIOLOGY. 9, 37 (2009).
Hellweg, Christoph, Pühler, Alfred, and Weidner, Stefan. “The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH”. BMC MICROBIOLOGY 9.1 (2009): 37.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:05Z
MD5 Prüfsumme
9f62b1035f5c8ae2c727f7f1388cd34a


37 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Dissecting the Acid Stress Response of Rhizobium tropici CIAT 899.
Guerrero-Castro J, Lozano L, Sohlenkamp C., Front Microbiol 9(), 2018
PMID: 29760688
Evolution of a multi-step phosphorelay signal transduction system in Ensifer: recruitment of the sigma factor RpoN and a novel enhancer-binding protein triggers acid-activated gene expression.
Tian R, Heiden S, Osman WA, Ardley JK, James EK, Gollagher MM, Tiwari R, Seshadri R, Kyrpides NC, Reeve WG., Mol Microbiol 103(5), 2017
PMID: 27935141
Common dyes used to determine bacterial polysaccharides on agar are affected by medium acidification.
Hawkins JP, Geddes BA, Oresnik IJ., Can J Microbiol 63(6), 2017
PMID: 28253454
Can stress response genes be used to improve the symbiotic performance of rhizobia?
da-Silva JR, Alexandre A, Brígido C, Oliveira S., AIMS Microbiol 3(3), 2017
PMID: 31294167
Transcriptomic Insight in the Control of Legume Root Secondary Infection by the Sinorhizobium meliloti Transcriptional Regulator Clr.
Zou L, Gastebois A, Mathieu-Demazière C, Sorroche F, Masson-Boivin C, Batut J, Garnerone AM., Front Microbiol 8(), 2017
PMID: 28729859
Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021.
Hawkins JP, Geddes BA, Oresnik IJ., Mol Plant Microbe Interact 30(12), 2017
PMID: 28871850
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, Søgaard-Andersen L, Becker A., J Bacteriol 198(3), 2016
PMID: 26574513
A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A., Sci Rep 6(), 2016
PMID: 27404346
Plant growth promoting rhizobia: challenges and opportunities.
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L., 3 Biotech 5(4), 2015
PMID: 28324544
The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules.
Santos MR, Marques AT, Becker JD, Moreira LM., Mol Plant Microbe Interact 27(4), 2014
PMID: 24593245
Response to temperature stress in rhizobia.
Alexandre A, Oliveira S., Crit Rev Microbiol 39(3), 2013
PMID: 22823534
Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium.
Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR., J Bacteriol 194(18), 2012
PMID: 22773790
Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.).
Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E., BMC Genomics 13(), 2012
PMID: 23270491
Role of FlbT in flagellin production in Brucella melitensis.
Ferooz J, Lemaire J, Letesson JJ., Microbiology 157(pt 5), 2011
PMID: 21273249
Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi.
Lei Z, Jian-ping G, Shi-qing W, Ze-yang Z, Chao Z, Yongxiong Y., Can J Microbiol 57(6), 2011
PMID: 21635219
A novel brain heart infusion broth supports the study of common Francisella tularensis serotypes.
Mc Gann P, Rozak DA, Nikolich MP, Bowden RA, Lindler LE, Wolcott MJ, Lathigra R., J Microbiol Methods 80(2), 2010
PMID: 20005265
Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming.
Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ., BMC Genomics 11(), 2010
PMID: 20210991
Autoregulation of Sinorhizobium meliloti exoR gene expression.
Lu HY, Cheng HP., Microbiology 156(pt 7), 2010
PMID: 20413557
Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti.
Santos MR, Cosme AM, Becker JD, Medeiros JM, Mata MF, Moreira LM., BMC Microbiol 10(), 2010
PMID: 20573193
The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti.
de Lucena DK, Pühler A, Weidner S., BMC Microbiol 10(), 2010
PMID: 20955556

69 References

Daten bereitgestellt von Europe PubMed Central.

Enumeration and Nfixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations
AUTHOR UNKNOWN, 1997
Variation in acid soil tolerance among strains of Rhizobium phaseoli.
Graham PH, Viteri SE, Mackie F, Vargas AT, Palacios A., Field Crops Res. 5(2), 1982
PMID: IND82077474
Soil-pH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in noncultivated soils in central New South Wales
AUTHOR UNKNOWN, 1991

AUTHOR UNKNOWN, 2006
Bacteroids in the Rhizobium-legume symbiosis inhabit a plant internal lytic compartment – implications for other microbial endosymbioses
AUTHOR UNKNOWN, 1989
Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance.
Priefer UB, Aurag J, Boesten B, Bouhmouch I, Defez R, Filali-Maltouf A, Miklis M, Moawad H, Mouhsine B, Prell J, Schluter A, Senatore B., J. Biotechnol. 91(2-3), 2001
PMID: 11566393
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.
Becker A, Berges H, Krol E, Bruand C, Ruberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Kuster H, Liebe C, Puhler A, Weidner S, Batut J., Mol. Plant Microbe Interact. 17(3), 2004
PMID: 15000396
A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377
Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression.
Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A., J. Biotechnol. 106(2-3), 2003
PMID: 14651866
Adaptive acidification tolerance response of Salmonella typhimurium.
Foster JW, Hall HK., J. Bacteriol. 172(2), 1990
PMID: 2404956
Acid stress responses in enterobacteria.
Bearson S, Bearson B, Foster JW., FEMS Microbiol. Lett. 147(2), 1997
PMID: 9119190
Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria.
Reeve WG, Tiwari RP, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG., Microbiology (Reading, Engl.) 145 ( Pt 6)(), 1999
PMID: 10411257
Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis.
Tiwari RP, Reeve WG, Fenner BJ, Dilworth MJ, Glenn AR, Howieson JG., J. Mol. Microbiol. Biotechnol. 7(3), 2004
PMID: 15263817
An essential role for actA in acid tolerance of Rhizobium meliloti.
Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR., Microbiology (Reading, Engl.) 142 ( Pt 3)(), 1996
PMID: 8868435
Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system.
Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR., Microbiology (Reading, Engl.) 142 ( Pt 7)(), 1996
PMID: 8757734
Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins.
Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR., FEMS Microbiol. Lett. 236(1), 2004
PMID: 15212786
Acid tolerance in legume root nodule bacteria and selecting for it
AUTHOR UNKNOWN, 2001
Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness.
Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martinez-Romero E, Werner D., Mol. Plant Microbe Interact. 16(2), 2003
PMID: 12575750
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis.
Reeve WG, Tiwari RP, Guerreiro N, Stubbs J, Dilworth MJ, Glenn AR, Rolfe BG, Djordjevic MA, Howieson JG., J. Mol. Microbiol. Biotechnol. 7(3), 2004
PMID: 15263818
The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions.
Reeve WG, Brau L, Castelli J, Garau G, Sohlenkamp C, Geiger O, Dilworth MJ, Glenn AR, Howieson JG, Tiwari RP., Microbiology (Reading, Engl.) 152(Pt 10), 2006
PMID: 17005985
The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions.
Sohlenkamp C, Galindo-Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas-Oates J, Raetz CR, Geiger O., Mol. Plant Microbe Interact. 20(11), 2007
PMID: 17977153
Why is carbonic anhydrase essential to Escherichia coli?
Merlin C, Masters M, McAteer S, Coulson A., J. Bacteriol. 185(21), 2003
PMID: 14563877
New substrates for the dicarboxylate transport system of Sinorhizobium meliloti.
Yurgel S, Mortimer MW, Rogers KN, Kahn ML., J. Bacteriol. 182(15), 2000
PMID: 10894729
The acetylation of polyamines in Escherichia coli.
DUBIN DT, ROSENTHAL SM., J. Biol. Chem. 235(), 1960
PMID: 13818299
Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium.
Munro GF, Hercules K, Morgan J, Sauerbier W., J. Biol. Chem. 247(4), 1972
PMID: 4551516
Characterization of putrescine production in nongrowing Vibrio parahaemolyticus cells in response to external osmolality.
Yamamoto S, Yamasaki K, Takashina K, Katsu T, Shinoda S., Microbiol. Immunol. 33(1), 1989
PMID: 2543889
Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.
Platero RA, Jaureguy M, Battistoni FJ, Fabiano ER., FEMS Microbiol. Lett. 218(1), 2003
PMID: 12583899
A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.
Bardin S, Dan S, Osteras M, Finan TM., J. Bacteriol. 178(15), 1996
PMID: 8755882
The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon.
Suziedeliene E, Suziedelis K, Garbenciute V, Normark S., J. Bacteriol. 181(7), 1999
PMID: 10094685
Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti 1021.
Barloy-Hubler F, Cheron A, Hellegouarch A, Galibert F., Microbiology (Reading, Engl.) 150(Pt 3), 2004
PMID: 14993315
Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899.
Moron B, Soria-Diaz ME, Ault J, Verroios G, Noreen S, Rodriguez-Navarro DN, Gil-Serrano A, Thomas-Oates J, Megias M, Sousa C., Chem. Biol. 12(9), 2005
PMID: 16183027
Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production.
Yao SY, Luo L, Har KJ, Becker A, Ruberg S, Yu GQ, Zhu JB, Cheng HP., J. Bacteriol. 186(18), 2004
PMID: 15342573
Acid tolerance in root nodule bacteria.
Glenn AR, Reeve WG, Tiwari RP, Dilworth MJ., Novartis Found. Symp. 221(), 1999
PMID: 10207916
Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.
Becker A, Ruberg S, Baumgarth B, Bertram-Drogatz PA, Quester I, Puhler A., J. Mol. Microbiol. Biotechnol. 4(3), 2002
PMID: 11931545
Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti.
Rotter C, Muhlbacher S, Salamon D, Schmitt R, Scharf B., J. Bacteriol. 188(19), 2006
PMID: 16980496
Motility and chemotaxis towards sugars in Rhizobium leguminosarum
AUTHOR UNKNOWN, 1981
pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.
Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL., J. Bacteriol. 187(1), 2005
PMID: 15601715
Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein.
Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN., Microbiology (Reading, Engl.) 148(Pt 5), 2002
PMID: 11988529
Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.
Dominguez-Ferreras A, Perez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuan J., J. Bacteriol. 188(21), 2006
PMID: 16916894
Escherichia coli acid resistance: tales of an amateur acidophile.
Foster JW., Nat. Rev. Microbiol. 2(11), 2004
PMID: 15494746
Rapid acid treatment of Escherichia coli: transcriptomic response and recovery.
Kannan G, Wilks JC, Fitzgerald DM, Jones BD, Bondurant SS, Slonczewski JL., BMC Microbiol. 8(), 2008
PMID: 18302792
A manual for the practical study of root nodule bacteria
AUTHOR UNKNOWN, 1970
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19216801
PubMed | Europe PMC

Suchen in

Google Scholar